• Title/Summary/Keyword: penetration mechanism

Search Result 216, Processing Time 0.021 seconds

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Mechanism of Dilatory Dissipation during Piezocone Tests in Lightly Overconsolidated Cohesive Soil (약간 과압밀된 점성토에서 발생하는 피에조콘 지연소산 메커니즘)

  • Ha, Tae-Gyun;Jung, Jong-Hong;Kim, Hong-Jong;Park, Lae-Seon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.73-84
    • /
    • 2007
  • For standard piezocones with shoulder filter elements immediately behind the cone tip, general dissipation curves show monotonically decreasing pore pressure from the initial value. However, dilatory dissipation behavior, showing a temporary increase in pore pressure followed by a decrease in the hydrostatic pressure, has been observed in lightly overconsolidated cohesive soils $(1. This unusual dissipation behavior was reported mostly in heavily overconsolidated ground and previous researches were limited to such cases. In this study, the mechanism of dilatory dissipation in lightly overconsolidated cohesive soils was investigated. The relativities of the ground properties evaluated from the CPTu data to the dilatory dissipation were analyzed. And, finite difference analyses on dissipation after cone penetration were performed. It was found that dilatory dissipation occurs in lightly overconsolidated soils since the higher excess pore pressure at the cone face propagates upward to the shoulder filter. Also, it was shown that the ratio of initial excess pore pressure at the cone face to that of the shoulder filter $({\Delta}u_{1i}/{\Delta}u_{2i})$, which is related to overconsolidation ratio (OCR) and hydrostatic pressure $(u_0)$, affects the dilatory dissipation.

A Numerical Study on the Fire Suppression Characteristics of a Water Mist with Natural Wind in a Road Tunnel (도로터널에서 자연풍에 의한 미세물분무의 화재제어 특성에 관한 수치해석 연구)

  • Hwang, Cheol-Hong;Kim, Han-Su;Lee, Chang-Eon;Jang, Young-Nam;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • In this study, the fire suppression characteristics of a water mist with natural wind in a road tunnel were calculated using the FDS(Fire Dynamic Simulation) code. In addition, the cooling and the chemical kinetic effects of water vapor on fire extinction ere investigated in a counterflow non-premixed flame using a detailed chemistry. As a result, the behavior of fire plume and the spray characteristics of water mist are modified remarkably with the increasing of wind velocity. In the case which is not the external natural wind, small droplets are more efficient in fire suppression than large droplets. However, the large droplets show better results on the fire suppression than the small droplets with the increasing of wind velocity. It can be estimated that the natural wind disturb the penetration of water droplets into the flame region and decrease the effect of oxygen dilution. Finally, it can be identified that the fire into the natural wind can be suppressed with smaller amount of $H_2O$ by flame stretching effect in the flame region than one in an enclosure, and the chemical kinetic effects of $H_2O$ on fire extinction are not affected significantly the velocity of natural wind.

Electromagnetic Modeling of High Altitude Electromagnetic Pulse Coupling into Large-Scale Underground Multilayer Structures (다층 지하 구조물로의 고고도 전자기파(HEMP) 커플링 현상에 대한 전자기적 모델링)

  • Kang, Hee-Do;Oh, Il-Young;Kim, Jung-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.392-401
    • /
    • 2012
  • This paper gives a electromagnetic coupling mechanism of the high altitude electromagnetic pulse (HEMP) into large- scale underground multilayer structures using analytic and numerical methods. The modeling methods are firstly addressed to the HEMP source which can be generated by intentional nuclear explosion. The instantaneous and intense electromagnetic pulse of the HEMP source is concerned from DC to 100 MHz band, because the power spectrum of the HEMP is rapidly decreased under -30 dB over the 100 MHz band. Through this range, a penetrated electric field distribution is computed within the large-scale underground multilayer structures. As a result, the penetrated electric field intensities at 0.1 and 1 MHz are about 10 and 5 kV/m, respectively. Therefore, additional shielding techniques are introduced to protect buried structures within the large-scale underground structures such as high-lossy material and filtering structures (wire screen).

Characterization of Reverse Leakage Current Mechanism of Shallow Junction and Extraction of Silicidation Induced Schottky Contact Area for 0.15 ${\mu}{\textrm}{m}$ CMOS Technology Utilizing Cobalt Silicide (코발트 실리사이드 접합을 사용하는 0.15${\mu}{\textrm}{m}$ CMOS Technology에서 얕은 접합에서의 누설 전류 특성 분석과 실리사이드에 의해 발생된 Schottky Contact 면적의 유도)

  • 강근구;장명준;이원창;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.25-34
    • /
    • 2002
  • In this paper, silicidation induced Schottky contact area was obtained using the current voltage(I-V) characteristics of shallow cobalt silicided p+-n and n+-p junctions. In reverse bias region, Poole-Frenkel barrier lowering influenced predominantly the reverse leakage current, masking thereby the effect of Schottky contact formation. However, Schottky contact was conclusively shown to be the root cause of the modified I-V behavior of n+-p junction in the forward bias region. The increase of leakage current in silicided n+-p diodes is consistent with the formation of Schottky contact via cobalt slicide penetrating into the p-substrate or near to the junction area and generating trap sites. The increase of reverse leakage current is proven to be attributed to the penetration of silicide into depletion region in case of the perimeter intensive n+-p junction. In case of the area intensive n+-p junction, the silicide penetrated near to the depletion region. There is no formation of Schottky contact in case of the p+-n junction where no increase in the leakage current is monitored. The Schottky contact amounting to less than 0.01% of the total junction was extracted by simultaneous characterization of forward and reverse characteristics of silicided n+-p diode.

Political Economy of Privatization of Public Utilities (공익산업의 민영화에 대한 정치$\cdot$경제적 접근)

  • Lee Heng;Chae Doo-Byoung
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.8-20
    • /
    • 2001
  • Neoliberalism became a catch word of a post-cold war era. It began to develop in the middle of welfare state crisis in developed countries. It promoted both a unified world market through mutual penetration of national boundaries in International scene and maximization of efficiency through market competition in domestic scene. Privatization of public corporations is a major policy to pursue market efficiency through deregulation. Two reasons are often adduced to support the cause The socio-economic changes diminished the necessity to establish public corporation on the one hand. On the other hand gross inefficiency has been observed in the management of public corporation. 'Government failure' is an apt expression of the inefficiency. In analysing the experiences of privatization of utility industries of some other countries we found a couple of lessons for a Korean case. First, it is doubtful if privatization, that is a change in the form of ownership, is a necessary condition for achieving market efficiency. Because it is possible to operate a mechanism of market competition while maintaining competition among public corporations and with private actors. Second, the patron-agent dilemma is often cited as a major culprit of an inefficient management of public corporations. But it is without saying that the dilemma is also found in the management of private firms. So, the issue is not the privatization per se but to realize responsible management through discipline and incentives.

  • PDF

An Experimental Study on the Effect of Capillary Pressure on the Void Formation in Resin Transfer Molding Process (수지이동 성형공정에서 기공형성에 미치는 모세관압의 영향에 관한 실험적 연구)

  • 이종훈;김세훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 1998
  • Flow-induced voids during resin impregnation and poor fiber wetting give serious effects on the mechanical properties of composites in resin transfer molding process. In order to better understand the characteristics of resin flow and to investigate the mechanism of void formation, flow visualization experiment for the resin impregnation was carried out on plain weaving glass fiber mats using silicon oils with various viscosity values. The permeability and the capillary pressure for the fiber mats of different porosities were obtained by measuring the penetration length of the resin with time and with various injection pressure. At low porosity and low operating pressure, the capillary pressure played a significant role in impregnation process. Video-assisted microscopy was used in taking the magnified photograph of the flow front of the resin to investigate the effect of the capillary pressure on the void formation. The results showed that the voids were formed easily when the capillary pressure was relatively high. No voids were detected above the critical capillary number of 2.75$\times$$10^{-3}, and below the critical number the void content increased exponentially with decrease of the capillary number. The content of void formed was independent of the viscosity of the resin. For a given capillary number, the void content reduced with the lower porosity of the fiber mat.

  • PDF

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).

Proteomic Analysis of Protein Changes in Human Lung Cancer Epithelial Cells Following Streptococcus pneumoniae Infection (Streptococcus pneumonia 감염으로 변화한 사람 폐 상피세포 단백질의 프로테오믹 분석)

  • Lee, Yun Yeong;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1050-1056
    • /
    • 2013
  • Streptococcus pneumoniae is the leading cause of community-acquired pneumonia throughout the world. The bacteria invade through lung tissue and cause sepsis, shock, and serious sequelae, including rheumatic fever and acute glomerulonephritis. However, the molecular mechanism associated with pneumonia's penetration of lung tissue and invasion of the blood stream are still unclear. We attempted to investigate the host cell response at protein levels to S. pneumoniae D39 invasion using human lung cancer epithelial cells, A549. Streptococcus pneumoniae D39 began to change the morphology of A549 cells to become round with filopodia at 2 hours post-infection. A549 cell proteins obtained at each infection time point were separated by SDS-PAGE and analyzed using MALDI-TOF. We identified several endoplasmic reticulum (ER) resident proteins such as Grp94 and Grp78 and mitochondrial proteins such as ATP synthase and Hsp60 that increased after S. pneumoniae D39 infection. Cytosolic Hsc70 and Hsp90 were, however, identified to decrease. These proteins were also confirmed by Western blot analysis. The identified ER resident proteins were known to be induced during ER stress signaling. These/ data, therefore, suggest that S. pneumoniae D39 infection may induce ER stress.

Dermal Absorption and Body Distribution of $^{125}I-rhEGF$ in Hairless Mice (헤어리스마우스 피부 국소에 적용된 $^{125}I-rhEGF$의 피부흡수 및 체내 분포)

  • Lee, Jeong-Uk;Chung, Seok-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.737-748
    • /
    • 1997
  • Distribution of rhEGF in the skin, plasma and several organ tissues following topical application of $^{125}I-rhEGF$ (0.4${\mu}$Ci) solution in 25% Pluronic F-127 on 154$mm^2$ normal and damaged (burned and stripped) skins of hairless mice was examined. The radioactivity in the stripped skin tissues increased as a function of time, and was 10-20 times higher than that in the normal and burned skins. The fractions of intact drug in the skin tissues were 40-60% for the normal and burned skins, and 60-80% for the stripped skin. It indicates that the stratum corneum layer behaves as a barrier for the dermal penetration of the drug. The radioactivity in the plasma was much higher for the stripped skin than for the normal and burned skins. However, the concentration of intact drug in the stripped skin was comparable to those in the normal and burned skins indicating most severe degradation (or metabolism) of the drug in the stripped skin. As a result, the fraction of intact drug in the plasma was lowest for the stripped skin (<10%). Body organ distribution of the drug was much higher for the stripped skin. The concentration in the stomach. Both in total radioactivity and intact drug, showed more than 10-times higher value than in the other organs (liver, kidney and spleen). The fraction of intact drug in each organ tissue was below 10-20%. And generally lowest for the stripped skin. The lowest fraction of the drug for the stripped skin could not be explained by the activity of the aminopeptidases in the skin since it was lower for the stripped skin than for the normal skin. Thereover, the fraction of intact drug appears to be determined by the balance between dermal uptake and systemic elimination of the drug, for example. The mechanism of dermal uptake of rhEGF was examined by topical applying 200${\mu}$l of 25% Pluronic F-127 solution containing 0.4 ${\mu}$Ci of $^{125}I-rhEGF$ and 0.14${\mu}$Ci of $^{14}C$-inulin (a marker of passive diffusion). The radioactivity of $^{125}I-rhEGF$ at each sampling time point (0.5, 1, 2, 4 and 8hr) was correlated (p<0.05) with the corresponding radioactivity of $^{14}C$-inulin. It appears to indicate the rhEGF may be uptaken into the skins mainly by the passive diffusion. This hypothesis was supported by the constant specific binding of EGF to the skin homogenates regardless of the skin models. Receptor mediated endocytosis (RME) appears to contribute negligibly, if any, to the overall uptake process.

  • PDF