DOI QR코드

DOI QR Code

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle

원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구

  • Received : 2012.08.23
  • Accepted : 2012.09.20
  • Published : 2013.03.01

Abstract

Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).

최근 국외의 원자로 상부헤드 CRDM 관통노즐에 일차수 응력부식균열로 인한 냉각수 누출사고가 발생하였다. 일차수응력부식균열은 부식에 민감한 재료, 인장 잔류 응력 및 부식 환경 등의 3 가지 요인의 상호작용에 의해 발생하는 것으로 알려져 있기 때문에 응력 부식 균열 발생 및 균열 진전을 억제하기 위해서는 용접에 의한 잔류응력에 대한 정확한 예측이 선행되어야 한다. 본 논문에서는 국내 Westinghouse 형 원자로 상부 헤드 관통노즐(CRDM)을 대상으로 노즐의 두께 및 형상 비($r_o/t$)에 따른 노즐 잔류응력 분포 특성에 대해 연구를 수행하였다. 국내에 현존하는 원자로 상부헤드 관통노즐의 실제크기($r_o$=51.6, t=16.9 mm)를 기준으로 노즐의 두께 및 형상 비($r_o/t$=2, 3, 4)의 변수를 정립하였으며 정중앙 및 최외곽에 위치한 노즐을 대상으로 연구를 수행하였다.

Keywords

References

  1. EPRI, 2004, "Materials Reliability Program : Welding Residual and Operating Stresses in PWR Alloy 182 Butt Welds (MRP-106)," EPRI Report.
  2. Moffat, G., Bamford, W. H. and Seeger, D., 2001, "Development of the Technical Basis for Plant Startup for the V.C Summer Nuclear Plant," Trans. of ASME PVP conference, PVP-Vol. 427, pp. 33-39
  3. Anderson, M. T., Rudland, D., Zhang, T. and Wilkowski, G. M., 2008, "Final Report-Inspection Limit Confirmation for Upper Head Penetration Nozzle Cracking," U.S. Department of Energy, pp. 1-22.
  4. Rudland, D., Chen, Y., Zhang, T., Wilkowski, G., Broussard, J. and White, G., 2007, "Comparison of Welding Residual Stress Solutions for Control Rod Drive Mechanism Nozzles," Trans. of ASME PVP conference, PVP2007-26045, pp. 1-15.
  5. Cheng, W., Rudland, D., Wilkowski, G. and Norris, W., 2005, "Effects Of Weld Geometry On Residual Stress and Crack Driving Force For Centerhole Control Rod Drive Mechanism Nozzles - Part I Weld Residual Stress," Trans. of ASME PVP conference, PVP2005-71077, pp. 1-6.
  6. Brust, F. W. and Scott, P. M., 2007, "Weld Residual Stresses and Primary Water Stress Corrosion Cracking in Bimetal Nuclear Pipe Welds," Trans. of ASME PVP conference, PVP2007-26297.
  7. Brust, F. W. and Scott, P., 2007, "Primary Water Stress Corrosion Cracking (PWSCC) in Bimetal Nuclear," Trans. of SMiRT 19 conference.
  8. Fox, M., 1979, "An Overview of Intergranular Corrosion Cracking in BWRs," Journal of materials in energy system, 1:3.
  9. Yaghi, A., Gyde, T. H., Becker, A. A., Sun, W. and Williams, J. A., 2006, "Residual Stress Simulation in Thin and Thick-Walled Stainless Steel Pipe Welds Including Pipe Diameter Effects," Int. J. of Pressure Vessels and Piping, Vol. 83, pp. 864-874. https://doi.org/10.1016/j.ijpvp.2006.08.014
  10. Brickstad, B. and Josefson, B. L., 1998, "A Parametric Study of Residual Stresses in Multi-Pass Butt-Welded Stainless Steel Pipes," Int. J. of Pressure Vessels and Piping, Vol. 75, pp.11-25. https://doi.org/10.1016/S0308-0161(97)00117-8
  11. U.S. Nuclear Regulatory Commission, 1992, "Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping-Final Report," NUREG-0313, Revision 2.
  12. Abel, J.S., Titrington, J., Jordan, R., Porowski, J. S., O'Donnell, W. J., Badlani, M. L. and Hampton, E. J., 1988, "Mechanical Methods of Improving Resistance to Stress Corrosion Cracking in BWR Piping Systems," Int. J. of Pressure Vessels and Piping, Vol.34, pp.17-29. https://doi.org/10.1016/0308-0161(88)90039-7
  13. Edwards, N. W., 1986, "Weld Overlay of BWR Flawed Piping," Int. J. of Pressure Vessels and Piping, Vol. 25, pp.17-24. https://doi.org/10.1016/0308-0161(86)90090-6
  14. Bae, H. Y., Kim, J. H., Kim, Y. J., Oh, C. Y., Kim, J. S., Lee, S. H. and Lee, K. S., 2012, "Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-groove weldment in RPV CRDM Penetration Nozzle," Trans. Korean Soc. Mech. Eng. A, Vol. 10.
  15. ASME B&PV Committee, 1998, ASME B&PV Code Case Section III Division 1 NB-4000, p. 193.
  16. Combustion Engineering, Inc., 1981, Analytical Report for Korea Nuclear Unit No. 5 Reactor Vessel, CENC-1466, pp. 1403-1488.
  17. Kim, J. S., Jin, T. Dong, E. and Prager, P., 2003, "Development of Residual Stress Analysis Procedure for Fitness-For-Service Assessment of Welded Structure," Trans. Korean Soc. Mech. Eng. A, Vol. 27, pp. 713-723. https://doi.org/10.3795/KSME-A.2003.27.5.713
  18. ABAQUS, 2003, ABAQUS Standard/User's Manual, version 6.9, Hibbit Karlsson & Sorensen, Inc.
  19. Song, T. K., Bae, H. Y., Kim, Y. J., Lee, K. S. and Park, C. Y., 2008, "Sensitivity Analyses of Finite Element Method for Estimating Residual Stress of Dissimilar Metal Multi-Pass Weldment in Nuclear Power Plant," Trans. Korean Soc. Mech. Eng. A, Vol. 32, pp. 770-781. https://doi.org/10.3795/KSME-A.2008.32.9.770
  20. ASME B&PV Committee, 2008, ASME B&PV Code Sec. II, PART A, B, C.
  21. Special Metals, 2008, Inconel Alloy 600, Special Metals Corporation Publication, No. SMC-207, September.
  22. ASME B&PV Committee, 2007, ASME B&PV Code Sec. III, Appendices.
  23. Cheng, W., Rudland, D., Wilkowski, G. and Norris, W., 2005, "Effects Of Weld Geometry On Residual Stress and Crack Driving Force For Centerhole Control Rod Drive Mechanism Nozzles - Part I Weld Residual Stress," Trans. of ASME PVP Conference, PVP2005-71077, pp. 1-6.
  24. Rudland, D., Wilkowski, G., Wang, Y. and Norris, W., 2004, "Development of Circumferential Through- Wall Crack K-Solutions for Control Rod Drive Mechanism Nozzles," Int. J. of Pressure Vessels and Piping 81, pp. 961-971 https://doi.org/10.1016/j.ijpvp.2004.04.003
  25. ASME, 2006, "Alternative Examination Requirements for PWR Reactor Vessel Upper Head with Nozzle Having Pressure-Retaining Partial- Penetration Welds," ASME Boiler and Pressure Vessel Code, Sec. XI, Code Case N-721-1, The American Society of Mechanical Engineers, New York

Cited by

  1. Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-A.2014.38.6.637