• 제목/요약/키워드: pearlite interlamellar spacing

검색결과 18건 처리시간 0.017초

아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향 (Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels)

  • 이상인;강준영;황병철
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가 (Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method)

  • 변재원;권숙인
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

초음파를 이용한 공석강의 펄라이트 층상간격 평가 (Ultrasonic Evaluation of Pearlite Interlamellar Spacing in Eutectoid Steel)

  • 김준수;변재원;권숙인;이승석;안봉영
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.22-26
    • /
    • 2001
  • The microstructural changes with pearlite formation heat treatment in eutectoid steel(railway steel) consisting of only pearlite structure were evaluated by the ultrasonic attenuation and velocity measurements. The result of this investigation showed a strong linear dependence of ultrasonic attenuation on pearlite interlamellar spacing, and accordingly on fracture strength of the pearlite.

  • PDF

중탄소강에서 합금원소 및 초석 페라이트가 기계적성질에 미치는 영향 (Effects of Alloying Elements and Pro-eutectoid Ferrite on Mechanicl Properties in Medium Carbon Steels)

  • 심혜정;송형락;남원종
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.350-358
    • /
    • 2004
  • The effects of alloying elements on microstructural features and mechanical properties in 0.55%C medium carbon steels were investigated. The samples were austenitized at 105$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. The addition of Cr resulted in the decrease of the volume fraction of pro-eutectoid ferrite and interlamellar spacing in pearlite and the increase of strength. However, the addition of B caused the increase of the volume fraction of pro-eutectoid ferrite. Reduction of area and Charpy impact values were influenced by the combined effect of microstructural features, such as the volume fraction of pro-eutectoid ferrite, interlamellar spacing and the thickness of lamellar cementite in pearlite.

Nb 첨가에 따른 저탄소강의 충격 특성에 미치는 변태 온도의 영향 (Influence Nb Addition and Transformation Temperature on Impact Properties of Low-Carbon Steels)

  • 이상인;강준영;황병철
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.590-597
    • /
    • 2016
  • In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.

페라이트-펄라이트 조직 아공석강의 강도와 연성에 미치는 미세조직적 인자의 영향 (Effect of Microstructural Factors on Strength and Ductility in Hypoeutectoid Steels with Ferrite-Pearlite Structure)

  • 이상인;강준영;이상윤;황병철
    • 열처리공학회지
    • /
    • 제29권1호
    • /
    • pp.8-14
    • /
    • 2016
  • This article presents a study on the tensile properties of hypoeutectoid steels with different ferrite-pearlite microstructures. Nine kinds of hypoeutectoid steel specimens were fabricated by varying carbon content and isothermal transformation temperature. The microstructural factors such as ferrite & pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured and then tensile tests were carried out on the specimens in order to investigate the correlation of the microstructural factors with strength and ductility. The pearlite volume fraction usually increased with decreasing transformation temperature, while the pearlite interlamellar spacing and cementite thickness decreased mostly with decreasing transformation temperature, irrespective of carbon content. The tensile test results showed that the yield and tensile strengths of all the steel specimens increased and their ductility was also improved as the transformation temperature decreased. For the steel specimens investigated, the difference in the transformation temperature dependence of strength and ductility could be explained by the fact that the variation in pearlite fraction with transformation temperature noticeably affected various microstructural factors such as pearlite interlamellar spacing and cementite thickness associated with pearlite fracture mechanism such as void initiation, cementite necking, and cracking.

Mg-Al-Zn 합금에서 불연속 석출물의 층상 구조와 경도에 미치는 냉각 속도의 영향 (Effect of Cooling Rate on Lamellar Structure and Hardness of Discontinuous Precipitates in Mg-Al-Zn Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.271-276
    • /
    • 2020
  • The relationship between the hardness and interlamellar spacing of discontinuous precipitates (DPs) formed by continuous cooling was studied for Mg-9%Al-1%Zn alloy. After solution treatment at 683 K for 24 h, the specimens were cooled to room temperature with different cooling rates ranging from 0.2 to 2 K·min-1, in order to obtain DPs with various interlamellar spacings. It was found that cooling rate of 2 K·min-1 yielded only small amount of nodular DPs at the grain boundaries, while cooling rates below 2 K·min-1 yielded both DPs and continuous precipitates (CPs). The volume fraction of DPs increased with increasing cooling rate up to 0.5 K·min-1, over which it abruptly decreased. The hardness of DPs was increased with an increase in the cooling rate, whereas the interlamellar spacing of the DPs was decreased with respect to cooling rate. The hardness of the DPs formed by continuous cooling was correlated with the interlamellar spacing and can follow a Hall-Petch type relation as in the case of pearlite with lamellar morphology.

페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향 (Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure)

  • 이승용;정상우;황병철
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

Pilot Plant를 이용한 600 MPa급 내진용 철근들의 제조, 미세조직과 기계적 특성 비교 (Microstructure and Mechanical Properties of 600 MPa-Grade Seismic Resistant Reinforced Steel Bars Fabricated by a Pilot Plant)

  • 홍태운;황병철
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.349-355
    • /
    • 2019
  • This study deals with the microstructure and tensile properties of 600 MPa-grade seismic reinforced steel bars fabricated by a pilot plant. The steel bar specimens are composed of a fully ferrite-pearlite structure because they were air-cooled after hot-rolling. The volume fraction and interlamellar spacing of the pearlite and the ferrite grain size decrease from the center region to the surface region because the surface region is more rapidly cooled than the center region. The A steel bar specimenwith a relatively high carbon content generally has a higher pearlite volume fraction and interlamellar spacing of pearlite and a finer ferrite grain size because increasing the carbon content promotes the formation of pearlite. As a result, the A steel bar specimen has a higher hardness than the B steel bar in all the regions. The hardness shows a tendency to decrease from the center region to the surface region due to the decreased pearlite volume fraction. On the other hand, the tensile-to-yield strength ratio and the tensile strength of the A steel bar specimen are higher than those of the B steel bar with a relatively low carbon content because a higher pearlite volume fraction enhances work hardening. In addition, the B steel bar specimen has higher uniform and total elongations because a lower pearlite volume fraction facilitates plastic deformation caused by dislocation slip.

보자력 측정에 의한 아공석강 및 공석강의 열처리에 따른 미세조직 평가 (Characterization of Microstructures of Variously Heat Treated Hypoeutectoid and Eutectoid Steel by Magnetic Coercivity Measurement)

  • 변재원;김정석;권숙인
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.565-572
    • /
    • 2004
  • The microstructures of variously heat treated hypoeutectoid($0.45\%$ carbon) and eutectoid($0.85\%$ carbon) steel were characterized by magnetic coercivity measurement. The effect of spheroidization of cementites on the coercivity was investigated for $0.45\%$ carbon steel. In case of $0.85\%$ carbon steel, microstructural parameters such as prior austenite grain size, phase and pearlite interlamellar spacing were measured along with coercivity to investigate the relationships between them. Prior austenite grain size had little effect on the measured coercivity. Coercivity was observed to be high in order of martensite, pearlite and ferrite phases. The linear decrease of coercivity with increasing pearlite interlamellar spacing was found. The effect of each microstructural factor on the coercivity and the potential of coercivity as a nondestructive evaluation parameter for assessing microstructures of steel products are discussed.