Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.11.590

Influence Nb Addition and Transformation Temperature on Impact Properties of Low-Carbon Steels  

Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kang, Jun-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.11, 2016 , pp. 590-597 More about this Journal
Abstract
In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.
Keywords
pearlite interlamellar spacing; impact toughness; ductile-brittle transition temperature; ferrite grain size;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 F. P. L. Kavishe and T. J. Baker, Mater. Sci. Technol., 2, 816 (1986).   DOI
2 C. M. Bae, C. S. Lee and W. J. Nam, Mater. Sci. Technol., 18, 1317 (2002).   DOI
3 S. Hong, J. Song, M. C. Kim, K. J. Choi and B. S. Lee, Met. Mater. Int., 22, 196 (2016).   DOI
4 R. Shukla, S. K. Ghosh, D. Chakrabarti and S. Chatterjee, Met. Mater. Int., 21, 85 (2015).   DOI
5 Y. You, C. Shang and S. Subramanian, Met. Mater. Int., 20, 659 (2014).   DOI
6 J. J. Jonas and I. Weiss, Met. Sci., 13, 238 (1979).   DOI
7 E. A. Simielli, S. Yue and J. J. Jonas, Metall. Trans. A, 23, 597 (1992).   DOI
8 M. G. Akben, B. Bacroix and J. J. Jonas, Acta Metall., 31, 161 (1983).   DOI
9 B. E. O'Donnelly, R. L. Reuben and T. N. Baker, Met. Technol., 11, 45 (1984).   DOI
10 D. A. Porter, K. E. Easterling and M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press (2009).
11 T. Gladman, I. D. Mcivor and F. B. Pickering, J. Iron Steel Inst., 210, 916 (1972).
12 K. K. Ray and D. Mondal, Acta Metall. Mater., 39, 2201 (1991).   DOI
13 J. M. Hyzak and I. M. Bernstein, Metall. Trans. A, 7A, 1217 (1976).
14 C. M. Bae, W. J. Nam and C. S. Lee, Scripta Mater., 41, 605 (1999).   DOI
15 H. Bhadeshia and R. Honeycombe, Steels: microstructure and properties, Butterworth-Heinemann (2011).
16 W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction, Wiley, New York (2007).
17 N. J. Petch, Acta Metall., 34, 1387 (1986).   DOI
18 N. J. Petch, Fracture, Technology Press MIT and Wiley, New York, 54 (1959).
19 J. W. Morris, Science, 320, 1022 (2008).   DOI
20 F. B. Pickering and B. Garbarz, Scripta Metall., 21, 249 (1987).   DOI