Browse > Article
http://dx.doi.org/10.12656/jksht.2020.33.6.271

Effect of Cooling Rate on Lamellar Structure and Hardness of Discontinuous Precipitates in Mg-Al-Zn Alloy  

Jun, Joong-Hwan (Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.33, no.6, 2020 , pp. 271-276 More about this Journal
Abstract
The relationship between the hardness and interlamellar spacing of discontinuous precipitates (DPs) formed by continuous cooling was studied for Mg-9%Al-1%Zn alloy. After solution treatment at 683 K for 24 h, the specimens were cooled to room temperature with different cooling rates ranging from 0.2 to 2 K·min-1, in order to obtain DPs with various interlamellar spacings. It was found that cooling rate of 2 K·min-1 yielded only small amount of nodular DPs at the grain boundaries, while cooling rates below 2 K·min-1 yielded both DPs and continuous precipitates (CPs). The volume fraction of DPs increased with increasing cooling rate up to 0.5 K·min-1, over which it abruptly decreased. The hardness of DPs was increased with an increase in the cooling rate, whereas the interlamellar spacing of the DPs was decreased with respect to cooling rate. The hardness of the DPs formed by continuous cooling was correlated with the interlamellar spacing and can follow a Hall-Petch type relation as in the case of pearlite with lamellar morphology.
Keywords
Mg-Al-Zn; discontinuous precipitates; hardness; continuous cooling; interlamellar spacing; Hall-Petch relation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Li, X. Yang, J. Hou and W. Du : J. Magnes. Alloy 8 (2020) 78.   DOI
2 K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870.   DOI
3 K. Fujii, K. Matsuda, T. Gonoji, K. Watanabe, T. Kawabata, Y. Uetani and S. Ikeno : Mater. Trans. 52 (2011) 340.   DOI
4 S. Takeshita, C. Watanabe, R. Monzen and S. Saikawa : J. Jpn. Inst. Light Met. 64 (2014) 470.   DOI
5 M. X. Zhang and P. M. Kelly : Scripta Mater. 48 (2003) 647.   DOI
6 S. Celotto : Acta Mater. 48 (2000) 1775.   DOI
7 J. H. Jun : J. Alloys Compd. 75 (2017) 237.   DOI
8 C. Zener : Trans. AIME 167 (1946) 550.
9 N. Ridley : Metall. Trns. A 15A (1984) 1019.   DOI
10 K. K. Ray and D. Mondal : Acta Metall. Mater. 39 (1991) 2201.   DOI
11 M. Dollar, I. M. Bernstein and A. W. Thompson : Acta Metall. 36 (1988) 311.   DOI
12 J. Gil Sevilano : P. Haasen, et al. (eds), Proc. ICSMA5, Aachen, Pergamon Press, New York, 1979, pp. 819.
13 J. H. Jun : J. Kor. Soc. Heat Treat. 24 (2011) 193.   DOI
14 J. H. Jun : J. Kor. Soc. Heat Treat. 25 (2012) 190   DOI
15 J. Song, J. She, D. Chen and F. Pan : J. Magnes. Alloy 8 (2020) 1.   DOI
16 A. H. Feng and Z. Y. Ma : Scripta Mater. 56 (2007) 397.   DOI
17 A. V. Koltygin, V. E. Bazhenov, E. A. Belova and A. A. Nikitina : J. Magnes. Alloy 1 (2013) 224.   DOI
18 M. Esmaily , D. B. Blucher, J. E. Svensson, M. Halvarsson and L. G. Johansson : Scripta Mater. 115 (2016) 91.   DOI
19 C. Lv, T. Liu, D. Liu, S. Jiang and W. Zeng : Mater. Des. 33 (2012) 529.   DOI
20 W. Zhou, T. Shen and N. N. Aung : Corros. Sci. 52 (2010) 1035.   DOI
21 J. D. Embury and R. M. Fisher : Acta Metall. 14 (1966) 147.   DOI