Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.8.565

Characterization of Microstructures of Variously Heat Treated Hypoeutectoid and Eutectoid Steel by Magnetic Coercivity Measurement  

Byeon Jai Won (Research Institute of Engineering and Technology, Korea University)
Kim C. S. (Division of Materials Science and Engineering, Korea University)
Kwun S. I. (Division of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.14, no.8, 2004 , pp. 565-572 More about this Journal
Abstract
The microstructures of variously heat treated hypoeutectoid($0.45\%$ carbon) and eutectoid($0.85\%$ carbon) steel were characterized by magnetic coercivity measurement. The effect of spheroidization of cementites on the coercivity was investigated for $0.45\%$ carbon steel. In case of $0.85\%$ carbon steel, microstructural parameters such as prior austenite grain size, phase and pearlite interlamellar spacing were measured along with coercivity to investigate the relationships between them. Prior austenite grain size had little effect on the measured coercivity. Coercivity was observed to be high in order of martensite, pearlite and ferrite phases. The linear decrease of coercivity with increasing pearlite interlamellar spacing was found. The effect of each microstructural factor on the coercivity and the potential of coercivity as a nondestructive evaluation parameter for assessing microstructures of steel products are discussed.
Keywords
magnetic coercivity; microstructure; carbon steel; nondestructive evaluation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. C. H. Lo, J. P. Jakubovics and C. B. Scruby, J. Appl. Phys., 81(8), 4069 (1997)   DOI   ScienceOn
2 D. C. Jiles, J. Phys. D 21, 1186 (1988)   DOI   ScienceOn
3 N. Nakai, Y. Furuya and M. Obata, Mater. Trans., JIM, 30, 197 (1989)   DOI
4 H. Kwun and G. L. Burkhardt, J. Appl. Phys., 61, 1576 (1987)   DOI
5 B. D. Cullity, Introduction to Magnetic Materials, 2nd ed., p.317, Addison-Wesley, New York, (1972)
6 M. G. Hetherington, J. P. Jakubovics, J. A. Szpunar and B. K. Tanner, Phil. Mag., 56B, 561 (1987)
7 B. L. Bramfitt and A. R. Marder, Mater. Charact., 39, 199 (1997)   DOI   ScienceOn
8 S. Yamaura, Y. Furuya and T. Watanabe, Acta Mater., 49, 3019 (2001)   DOI   ScienceOn
9 H. Sakamoto, M. Okada and M. Homma, IEEE Trans. Magn., 23, 2236 (1987)   DOI
10 D. W. Kim and D. Kwon, J. Magn. Magn. Mater., 257, 175 (2003)   DOI   ScienceOn
11 G. Krauss, Steels: Heat Treatment and Processing Principles, p.67, Materials Park, Ohio, (1995)
12 E. Underwood, Quantitative Stereology, p.56, Addison-Wesley, New York, (1972)
13 J. H. Hyzark and I. M. Bernstein, Metall. Trans., 7A, 1217 (1976)
14 A. R. Marder and B. L. Bramfitt, Metall. Trans., 7A, 365 (1976)
15 S. I. Kwun, S. T. Hong and W. Y. Choo, J. Mater. Sci. Lett., 19, 1453 (2000)   DOI   ScienceOn
16 I. Altpeter, J. Nondestruct. Eval., 15(2), 45 (1996)   DOI   ScienceOn
17 K. M. Vedula and R. W. Heckel, Metall. Trans., 1, 9 (1970)
18 J. W. Byeon and S. I. Kwun, Mater. Trans., 44, 2184 (2003)   DOI   ScienceOn
19 J. W. Byeon and S. I. Kwun, Mater. Lett., 58, 94 (2004)   DOI   ScienceOn
20 J. W. Byeon and S. I. Kwun, Phys. Stat. Sol. B, 241(7), 1756 (2004)   DOI   ScienceOn