• Title/Summary/Keyword: pd catalyst

Search Result 284, Processing Time 0.026 seconds

Separation of Non-Metallic Components in Waste Printed Circuit Boards (WPCBs) using Organic Solvent and Potassium Phosphate Solution (유기용매와 인산칼륨 용액을 이용한 폐 인쇄회로기판에서 비금속성분의 분리)

  • Lee, Jae-Cheon;Jeong, Jin Ki;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • Waste printed circuit boards (WPCBs) contain valuable metals such as Cu, Ni, Au, Ag, and Pd. For an effective recycling of WPCBs, it is essential to recover the valuable metals. In recent years, recycling processes have come to be necessary for separating noble metals from WPCBs due to an increasing amount of electronic device wastes. However, it is well known that glass reinforced epoxy resins in the WPCBs are difficult materials to separate into elemental components, namely metals, glass fibers and epoxy resins in the chemical recycling process. $K_3PO_4$ as a catalyst in dimethylformamide (DMF) and N-Methyl-2-pyrrolidone (NMP) was used to depolymerize epoxy resins for recovering metallic and non-metallic components from WPCBs. Reactions of WPCBs were carried out at temperatures $160{\sim}200^{\circ}C$ for 2~12 h. The recycled glass fiber from WPCBs was analyzed by thermogravimetric analyzer (TGA) and evaluated the degree of solubility of the epoxy resin for separation efficiencies of the WPCBs.

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells

  • Choe, Seunghoe;Lee, Byung-Seok;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.

Development of Mixed Conducting Ceramic Membrane for High Purity Hydrogen and Carbon Production from Methane Direct Cracking (복합전도성 세라믹 분리막의 탄화수소 직접분해에 의한 고순도 수소와 탄소 제조)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.649-655
    • /
    • 2011
  • Methane direct cracking can be utilized to produce $CO_x$ and $NO_x$-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. We present the results of a systematic study of methane direct cracking using a mixed conducting oxide, Y-doped $BaZrO_3$ ($BaZr_{0.85}Y_{0.15}O_3$), membrane. In this paper, dense $BaZr_{0.85}Y_{0.15}O_3$ membrane with disk shape was successfully sintered at $1400^{\circ}C$ with a relative density of more 93% via addition of 1 wt% ZnO. The ($BaZr_{0.85}Y_{0.15}O_3$) membrane is covered with Pd as catalyst for methane decomposition with an DC magnetron sputtering method. Reaction temperature was $800^{\circ}C$ and high purity methane as reactant was employed to membrane side with 1.5 bar pressure. The $H_2$ produced by the reaction was transported through mixed conducting oxide membrane to the outer side. In addition, it was observed that the carbon, by-product, after methane direct cracking was deposited on the Pd/ZnO-$BaZr_{0.85}Y_{0.15}O_3$ membrane. The produced carbon has a shape of sphere and nanosheet, and a particle size of 80 to 100 nm.

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

A Study on the Reaction Characteristics of the HCHO Oxidation Using Nobel Metal Catalysts at Room Temperature (귀금속계 촉매를 이용한 HCHO 상온 산화 반응특성 연구)

  • Kim, Geo Jong;Seo, Phil Won;Kang, Youn Suk;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 2014
  • In this study, we investigated the noble metal catalysts for HCHO removal at room temperature. These catalysts were characterized by XRD, FT-IR, CO-chemisorption. As a result, Pt and Pd based catalysts prepared by the reduction treatment showed the superior HCHO oxidation ability at room temperature. When the catalysts were prepared using $TiO_2$ support, which is well known as the reducing support, showed the superior activity. Also, the activity decreased by the agglomeration of active metal with increasing the reduction time. In case of reduction catalysts, it has been confirmed that the desorption and adsorption ability properties of HCHO is excellent at room temperature.

Supercritical Water Gasification of Low Rank Coal with High Moisture Content (고함수 저등급 석탄의 초임계수 가스화 특성)

  • Yoon, Sang Jun;Lee, Jae Goo;Ra, Ho Won;Seo, Myung Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.340-346
    • /
    • 2013
  • Study on clean and efficient utilization technology for low rank coal with high moisture content is actively ongoing due to limited reserves of petroleum and of high grade coal and serious climate change caused by fossil fuel usage. In the present study, supercritical water gasification of low rank coal was performed. With increasing reaction temperature, content of combustible gases such as $H_2$ and $CH_4$ in the syngas increased while the $CO_2$ content decreased. As the reaction pressure increased from 210 to 300 bar, the $CO_2$ content in the syngas increased while the hydrocarbon gas content decreased. The $H_2$ and $CH_4$ content in the syngas increased slightly with pressure. With the addition of Pd, Pt, and Ru catalysts, it was possible to improve the production of $H_2$. Moreover, the increase of active metal content in the catalyst increased the $H_2$ productivity. The Ru catalyst shows the best performance for increasing the $H_2$ content in the syngas, while decreasing the $CO_2$ content.

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Synthesis and Characterization of Oligomers Composed of Alternating 2,5-Bis(ethynylenedimethylsilylene)thienylene and Arylene Units

  • Kwak, Young-Woo;Lee, Kyung-Koo;Cha, Seung-Hun;Lee, Sang-Koo;Lee, In-Sook;Park, Yong-Tae;Lee, Jae-Keun;Yoh, Soo-Dong;Kim, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.479-483
    • /
    • 2003
  • The reactions of 2,5-bis(ethynyldimethylsilyl)thiophene (1) with aromatic dihalides(1,4-dibromobenzene, 4,4'- dibromobiphenyl, 9,10-dibromoanthracene, 2,5-dibromopyridine, 2,5-dibromothiophene, and 2,6-diiodo-4- nitroaniline) were carried out in the presence of a $[(PPh_3)_2PdCl_2]$-CuI catalyst in refluxing triethylamine to give poly{[2,5-bis(ethynylenedimethylsilylene)thienylene](arylene)} (2-7) with molecular weights of 2200-7400. The oligomers reveal characteristic absorption in the UV/visible region. The thermal behavior of 2-7 was examined by thermogravimetric analysis in an argon atmosphere.

A Numerical Study on the Propane Combustion Characteristics in a Catalytic Combustor (프로판의 촉매연소 특성에 관한 수치적 연구)

  • Lee, Youn-Hwa;Kim, Chong-Min;Kim, Man-Young;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.247-250
    • /
    • 2009
  • The catalytic combustor has the advantage of stable combustion under very lean conditions with low emissions of $NO_x$, CO and unburned hydrocarbon(UHC). Notwithstanding these advantages, the commercial application of the catalytic combustion has been delayed due to the complicated reaction process. For the stable operation of catalytic combustor, study on the combustion characteristics of the catalytic combustor is needed. So, in this study, numerical study on the propane combustion characteristics of the catalytic combustor with Pd-based catalyst is performed.

  • PDF

A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism (전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구)

  • Park, Jun-Young;Kim, Ji-Hyun;Park, Ka-Young;Wachsman, Eric D.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.92-96
    • /
    • 2010
  • Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.