Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.1.7

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells  

Choe, Seunghoe (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Lee, Byung-Seok (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.1, 2017 , pp. 7-14 More about this Journal
Abstract
This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.
Keywords
Polymer electrolyte membrane unitized regenerative fuel cell; Bifunctional oxygen electrode; Membrane electrode assembly; Diffusion layer; Electrocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.-S. Lee, H.-Y. Park, I. Choi, M. K. Cho, H.-J. Kim, S. J. Yoo, D. Henkensmeier, J. Y. Kim, S. W. Nam, S. Park, K.-Y. Lee and J. H. Jang, J. Power Sources, 2016, 309, 127-134.   DOI
2 S. Song, H. Zhang, X. Ma, Z.-G. Shao, Y. Zhang and B. Yi, Electrochemistry Communications, 2006, 8(3), 399-405.   DOI
3 G. Chen, H. Zhang, J. Cheng, Y. Ma and H. Zhong, Electrochemistry Communications, 2008, 10(9), 1373-1376.   DOI
4 H.-Y. Jung, S.-Y. Huang, P. Ganesan and B. N. Popov, J. Power Sources, 2009, 194(2), 972 -975.   DOI
5 S. A. Grigoriev, P. Millet, K. A. Dzhus, H. Middleton, T. O. Saetre and V. N. Fateev, Int. J. Hydrogen Energy, 2010, 35(10), 5070-5076.   DOI
6 H.-Y. Jung, S.-Y. Huang and B. N. Popov, J. Power Sources, 2010, 195(7), 1950-1956.   DOI
7 S. Altmann, T. Kaz and K. A. Friedrich, Electrochim. Acta, 2011, 56(11), 4287-4293.   DOI
8 W. H. Lee and H. Kim, J. Electrochem. Soc., 2014, 161(6), F729-F733.   DOI
9 S. Zhigang, Y. Baolian and H. Ming, J. Power Sources, 1999, 79(1), 82-85.   DOI
10 X. Zhuo, S. Sui and J. Zhang, Int. J. Hydrogen Energy, 2013, 38(11), 4792-4797.   DOI
11 S.-H. Roh, T. Sadhasivam, H. Kim, J.-H. Park and H.-Y. Jung, Int. J. Hydrogen Energy, 2016, 41(45), 20650-20659.   DOI
12 Y. Zhang, C. Wang, N. Wan and Z. Mao, Int. J. Hydrogen Energy, 2007, 32(3), 400-404.   DOI
13 Y. Wang, D. Y. C. Leung, J. Xuan and H. Wang, Renewable and Sustainable Energy Reviews, 2016, 65, 961-977.   DOI
14 F. Ye, J. Li, X. Wang, T. Wang, S. Li, H. Wei, Q. Li and E. Christensen, Int. J. Hydrogen Energy, 2010, 35(15), 8049-8055.   DOI
15 F. Mitlitsky, B. Myers and A. H. Weisberg, Energy & Fuels, 1998, 12, 56-71.   DOI
16 T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara and Y. Miyazaki, J. Power Sources, 2002, 112(2), 583-587.   DOI
17 M. Gabbasa, K. Sopian, A. Fudholi and N. Asim, Int. J Hydrogen Energy, 2014, 39(31), 17765-17778.   DOI
18 J. Pettersson, B. Ramsey and D. Harrison, J. Power Sources, 2006, 157(1), 28-34.   DOI
19 F. Barbir, T. Molter and L. Dalton, Int. J. Hydrogen Energy, 2005, 30(4), 351-357.   DOI
20 F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang and C.-Y. Du, J. Power Sources, 2012, 210, 321-326.   DOI
21 S. A. Grigoriev, P. Millet, S. A. Volobuev and V. N. Fateev, Int. J. Hydrogen Energy, 2009, 34(11), 4968-4973.   DOI
22 B.-S. Lee, H.-Y. Park, M. K. Cho, J. W. Jung, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Park, K.-Y. Lee and J. H. Jang, Electrochemistry Communications, 2016, 64, 14 -17.   DOI
23 T. Ioroi, T. Oku, K. Yasuda, N. Kumagai and Y. Miyazaki, J. Power Sources, 2003, 124(2), 385-389.   DOI
24 X. Wang, H. Zhang, J. Zhang, H. Xu, X. Zhu, J. Chen and B. Yi, J. Power Sources, 2006, 162(1), 474-479.   DOI
25 C. M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano, Y. Hasegawa, N. Yokoi, A. Kato and T. Yoshida, Int. J. Hydrogen Energy, 2011, 36(2), 1740-1753.   DOI
26 C. M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano, A. Kato and T. Yoshida, J. Power Sources, 2012, 202, 108-113.   DOI
27 F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang and C.-Y. Du, Electrochemistry Communications, 2012, 14(1), 63-66.   DOI
28 J. K. Norskov, J. Rossmeisl, A. Logadottir and L. Lindqvist, Journal of Physical Chemistry B, 2014, 108(46), 17886-17892.   DOI
29 M. H. Miles and M. A. Thomason, J. Electrochem. Soc., 1976, 123(10), 1459-1461.   DOI
30 http://www.platinum.matthey.com/prices/price-tables
31 B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park, S. W. Nam, K.-Y. Lee and J. H. Jang, Appl. Catal., B, 2015, 179, 285-291.   DOI
32 U. Wittstadt, E. Wagner and T. Jungmann, J. Power Sources, 2005, 145(2), 555-562.   DOI