Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.1.092

A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism  

Park, Jun-Young (Department of Advanced Materials Engineering, Sejong University)
Kim, Ji-Hyun (Department of Advanced Materials Engineering, Sejong University)
Park, Ka-Young (Department of Advanced Materials Engineering, Sejong University)
Wachsman, Eric D. (Department of Materials Science and Engineering, University of Florida)
Publication Information
Abstract
Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.
Keywords
Gas sensor; Carbon monoxide; Titania; $La_2CuO_4$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. T. Moseley, “Solid State Gas Sensors,” Mea. Sci. Technol., 8 223-37 (1997).   DOI
2 R. Mukundan and F. Garzon, “Electrochemical Sensors for Energy and Transportation,” Electrochem. Soc. Interface, 13 30-5 (2004).
3 A.-M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, “Solid-State Gas Sensors: A Review,” J. Electrochem. Soc., 139 3690-704 (1992).   DOI
4 A.-M. Azad and E. D. Wachsman, ''Solid State Chemical Sensors for CO,” pp. 455 in Proceedings of the 208th Meeting of the Electrochemical Society, Solid State Ionic Devices II, Edited. E. D. Wachsman, W. Weppner, E. Traversa, M. Liu, P. Vanysek, and N. Yamazoe, The Electrochemical Society, Pennington, NJ, 2001.
5 N. Li, T. C. Tan, and H. C. Zheng, “High Temperature Carbon Monoxide Potentiometric Sensor,” J. Electrochem. Soc., 140 1068-73 (1993).   DOI
6 J. Yoo, S. Chatterjee, F. M. Van Assche, and E. D. Wachsman, “Influence of Adsorption and Catalytic Reaction on Sensing Properties of a Potentiometric $La_2CuO_4/YSZ/Pt$ Sensor,” J. Electrochem. Soc., 154 J190-5 (2007).   DOI
7 E. D. Bartolomeo, M. L. Grilli, and E. Traversa, “Sensing Mechanism of Potentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes,” J. Electrochem. Soc., 151 H133-9 (2004).   DOI
8 N. Yamazoe and N. Miura, “Potentiometric Gas Sensors for Oxidic Gases,” J. Electroceram., 2 243-55 (1998).   DOI
9 Shimizu, H. Nishi, H. Suzuki, and K. Maeda, “Solid-State NOx Sensor Combined with NASICON and Pb-Ru-Based Pyrochlore-Type Oxide Electrode,” Sens. Actuators B, 65 141-43 (2000).   DOI
10 R. Mukundan, E. Brosha, D. Brown, and F. Garzon, “A Mixed-Potential Sensor Based on a $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte and Platinum and Gold Electrodes,” J. Electrochem. Soc., 147 1583-88 (2000).   DOI
11 E. D. Wachsman and P. Jayaweera, “Selective Detection of $NO_x$ by Differential Electrode Equilibria,” pp. 298 in Proceedings of the 208th Meeting of The Electrochemical Society, Solid State Ionic Devices II – Ceramic Sensors, Edited. E. D. Wachsman, W. Weppner, E. Traversa, M. Liu, P. Vanysek, and N. Yamazoe, The Electrochemical Society, Pennington, NJ, 2001.
12 K. Fukui and M. Nakane, “CO Gas Sensor Based on $Au-La_2O_3$ Loaded $SnO_2$ Ceramic,” Sensors Actuators B, 25 486-90 (1995).   DOI
13 F. M. Van Asshe and E. D. Wachsman, “Isotopically Labeled Oxygen Studies of the NOx Exchange Behavior of $La_2CuO_4$ to Determine Potentiometric Sensor Response Mechanism,” Solid State Ionics, 179 2225-33 (2008).   DOI
14 F. M. Van Assche, J. C. Nino, and E. D. Wachsman, “Infrared and X-ray Photoemission Spectroscopy of Adsorbates on $La_2CuO_4$ to Determine Potentiometric $NO_x$ Sensor Response Mechanism,” J. Electrochem. Soc., 155 J198-J204 (2008).   DOI
15 B. White, E. Traversa, and E. D. Wachsman, “Investigation of $La_2CuO_4/YSZ/Pt$ Potentiometric NOx Sensors with Electrochemical Impedance Spectroscopy,” J. Electrochem. Soc., 155 J11-6 (2008).   DOI
16 D. H. Yoon, J. H. Yu, and G. M. Choi, “CO Gas Sensing Properties of ZnO–CuO Composite,” Sensors Actuators B, 46 15-23 (1998).   DOI
17 H. Okamoto, H. Obayashi, and T. Kudo, “Carbon Monoxide Gas Sensor Made of Stabilized Zirconia,” Solid State Ionics, 1 319-26 (1980).   DOI
18 N. Miura, G. Y. Lu, and N. Yamazoe, “Progress in Mixed-Potential Type Devices Based on Solid Electrolyte for Sensing Redox Gases,” Solid State Ionics, 136-7 533-42 (2000).
19 H. Okamoto, H. Obayashi, and T. Kudo, “Carbon Monoxide Gas Sensor Made of Stabilized Zirconia,” Solid State Ionics, 1 319-26 (1980).   DOI
20 N. Yamazoe and N. Miura, “Gas Sensors Using Solid Electrolytes,” Mater. Res. Soc. Bull., 24 37-43 (1996).
21 G. Martinelli, M. C. Carotta, E. Traversa, and G. Ghiotti, “Thick-Film Gas Sensors Based on Nano-Sized Semiconducting Oxide Powders,” MRS Bulletin, 30-36 (1999).
22 C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain Size Effects on Gas Sensitivity of Porous $SnO_2$-Based Elements,” Sensors Actuators B, 3 147-55 (1991).   DOI
23 E. D. Wachsman and P. Jayaweera, “Solid State Electrochemical Cell for Measuring Components of a Gas Mixture and Related Measurement Method,” Filed May 7, 1996 U. S. Patent No. 08/646,448.
24 B. M. White, E. Macam, F. M. Van Assche, E. Traversa, and E. D. Wachsman, “A Theoretical Framework for Prediction of Solid State Potentiometric Gas Sensor Behavior,” ECS Trans., 3 179-94 (2006).
25 M. L. Grilli, E. Di Bartolomeo, and E. Traversa, “Electrochemical NOx Sensors Based on Interfacing Nanosized LaFeO3 Perovskite-Type Oxide and Ionic Conductors,” J. Electrochem. Soc., 148 H98-102 (2001).   DOI
26 Elisabetta Di Bartolomeo, Maria Luisa Grilli, Jong Won Yoon, and Enrico Traversa, “Zirconia-Based Electrochemical NOx Sensors with Semiconducting Oxide Electrodes,” J. Am. Ceram. Soc., 87 1883-89 (2004).
27 L. D. Birkefeld, A.-M. Azad, and S. A. Akbar, “Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide,” J. Am. Ceram. Soc., 75 2964-68 (1992).   DOI
28 S. A. Akbar and L. B. Younkman, “Sensing Mechanism of a Carbon Monoxide Sensor Based on Anatase Titania,” J. Electrochem. Soc., 144 1750-3 (1997).   DOI
29 J.-Y. Park, A.-M. Azad, S.-J. Song, and E. D. Wachsman, “Titania-based Miniature Potentiometric Carbon Monoxide Gas Sensors with High Sensitivity”, J. Am. Ceram. Soc., In print.
30 J.-Y. Park, S.-J. Song, and E. D. Wachsman, “Highly Sensitive and Selective Miniaturized Potentiometric CO Sensors with Titania-based Sensing Materials,” J. Am. Ceram. Soc., In print.
31 B. White, S. Chatterjee, E. Macam, and E. D. Wachsman, “Effect of Electrode Microstructure on the Sensitivity and Response Time of Potentiometric NOx Sensors,” J. Am. Ceram. Soc., 91 2024-31 (2008).   DOI