• 제목/요약/키워드: pcm

검색결과 709건 처리시간 0.03초

미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성 (Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films)

  • 양지원;이연준;조은혜
    • 한국환경농학회지
    • /
    • 제42권3호
    • /
    • pp.184-192
    • /
    • 2023
  • Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.

혹한·혹서 피해 저감용 PCM 혼입콘크리트의 내구성에 관한 연구 (A Study on the Durability of PCM Mixed Concrete for the Reduction of Cold and Hot Damage)

  • 김호열;장일영
    • 한국재난정보학회 논문집
    • /
    • 제20권2호
    • /
    • pp.390-397
    • /
    • 2024
  • 연구목적:본 연구에서는 혹서 및 혹한 환경에 노출 콘크리트에서 발생할 수 있는 재난을 방지하기위해 PCM을 활용해 콘크리트에 열성능을 부여하고 내구성에 미치는 영향을 분석하였다. 연구방법:두 종류의 PCM을 시멘트 부피대비 10, 30, 50% 혼입한 콘크리트를 제작한 후 공극량, 동결융해 저항성, 스케일링 저항성을 평가하였다. 연구결과:종류에 상관없이 PCM 분말을 콘크리트에 혼입할 경우 공극량이 감소되는 것으로 나타났고 10%, 30% 혼입시 동결융해 저항성 또한 향상되는 것으로 나타났다. 또한 혼입량이 높아질수록 스케일링 저항성이 향상되는 것을 확인하였다. 결론: 분말형태의 PCM을 콘크리트에 혼입 시 일정수준까지는 채움효과에 의해 내구성을 향상시킬 수 있을 것으로 판단되며 실제 현장 적용을 위해서는 추가적으로 다양한 연구가 뒷받침 되어야 할 것으로 사료된다.

동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구 (Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation)

  • 이진욱;안상민;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.

PCM과 키토산 처리된 실크혼방 직물의 열적특성 (Thermal Characteristics of Silk/Cotton Fabric by PCM and Chitosan Treatment)

  • 마재혁;양경숙;구강
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2012년도 제46차 학술발표회
    • /
    • pp.59-59
    • /
    • 2012
  • 의류용 섬유제품은 고유의 기능인 보온성을 비롯하여, 태나 착용감, 또는 패션에 부응하는 다양한 성능이 요구되고 있다. 섬유 직물의 보온기능은 경량 보온과 축열 보온 그리고 발열 등이 중요한 기능으로 인식되고 있으며 특히 적극적인 보온성이 요구된다. 본 연구에서는 그 개선책으로서 패션소재표면에 상전이물질을 코팅하여 보온성을 조사했다. 상전 이물질 (PCM,Phase change materials) 입자를 DSC분석기로 측정하여 열거동을 관찰하였고, 실크직물과 실크혼방 직물에 PCM과 키토산을 농도별로 처리하여 보온성 테스트와 SEM을 측정하였다. 실크직물과 실크혼방 직물에 PCM과 키토산 처리하여 직물의 보온성을 측정해 본 결과, 실크직물 9.1% 실크혼방 직물은 29.9%로 실크혼방 직물이 실크직물보다 우수한 보온성을 보였다. SEM 관찰에서도 실크직물과 실크혼방 직물의 표면에 PCM입자의 침투정도도 확연한 차이를 보였다. 이를 미루어 볼 때 실크직물보다 실크혼방 직물에 PCM과 키토산을 처리하였을 경우 우수한 보온성을 보인다고 생각된다.

  • PDF

Recency and Frequency based Page Management on Hybrid Main Memory

  • Kim, Sungho;Kwak, Jong Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.1-8
    • /
    • 2018
  • In this paper, we propose a new page replacement policy using recency and frequency on hybrid main memory. The proposal has two features. First, when a page fault occurs in the main memory, the proposal allocates it to DRAM, regardless of operation types such as read or write. The page allocated by the page fault is likely to be high probability of re-reference in the near future. Our allocation can reduce the frequency of write operations in PCM. Second, if the write operations are frequently performed on pages of PCM, the pages are migrated from PCM to DRAM. Otherwise, the pages are maintained in PCM, to reduce the number of unnecessary page migrations from PCM. In our experiments, the proposal reduced the number of page migrations from PCM about 32.12% on average and reduced the number of write operations in PCM about 44.64% on average, compared to CLOCK-DWF. Moreover, the proposal reduced the energy consumption about 15.61%, and 3.04%, compared to other page replacement policies.

PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 -열조절 섬유소재의 착용효과- (Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials(PCM) -Wearing comfort of the developed thermoregulating textile materials-)

  • 신윤숙;정영옥;전향란;손경희;김성희
    • 한국의류학회지
    • /
    • 제28권6호
    • /
    • pp.767-775
    • /
    • 2004
  • In order to evaluate physiological responses and comfort sensation of the developed thermoregulating textile material, polyester knit fabric was treated with phase change material (PCM) microcapsules by printing. Ten male subjects wearing an experimental best with and without PCMs were seated for 20 minutes, then exercised for 20 minutes, and then seated for 30 minutes in the chamber which was controlled under the temperatures of 20$\pm$1$^{\circ}C$, 50$\pm$5%R.H. The subject's skin temperature, microclimate inside garment and comfort sensation of two experimental bests were compared one another. As a result, the rectal temperature, skin temperature and mean skin temperature were similar in the two groups, and the subjects were not able to perceive the differences in comfort of the two experimental bests. However, the effect of PCM microcapsule could be seen from microclimate temperature and humidity. The microclimate temperature of the PCM garment at chest was significantly higher during exercise. The microclimate humidity of the PCM garment at chest was significantly lower during exercise and rest.

PCM 유닛을 적용한 공기 열원 히트펌프의 연속난방 성능 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Performance of an Air-Source Heat Pump Using a PCM Unit for Continuous Heating)

  • 장민;정동일;정종호;김용찬
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.537-543
    • /
    • 2015
  • Air-source heat pumps are widely used in winter as heating units due to their higher efficiency compared to electronic heaters or gas fired equipment. However, the air-source heat pump can cause discomfort during periodic defrosting operations. In this study, a PCM unit for continuous heating was adopted to solve this problem. The PCM unit consisted of a PCM, a heat exchanger, and control valves. It was installed between the outdoor and indoor units. The performance of the proposed system was measured during both defrosting and heating operations. The indoor unit showed an average leaving temperature of $26^{\circ}C$ after adopting the PCM unit for continuous heating during the defrosting operation.

Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings

  • Han, Wei;Jiang, Yujing;Zhang, Xuepeng;Koga, Dairiku;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.123-134
    • /
    • 2021
  • In this paper, the carbon fiber reinforced plastic (CFRP) grids embedded in polymer cement mortar (PCM) shotcrete (CFRP-PCM method) was conducted to repair the degraded tunnel linings with a cavity. Subsequently, the reinforcing effect of the CFRP-PCM method under different degrees of lining deterioration was quantitatively evaluated. Finally, the limit state design method of the M-N interaction curve was conducted to determine whether the structure reinforced by the CFRP-PCM method is in a safe state. The main results indicated that when the cavity is at the shoulder, the lining damage rate is more serious. In addition, the remarkably reinforcing effect on the degraded tunnel linings could be achieved by applying a higher grade of CFRP grids, whereas the optimization effect is no longer obvious when the grade of CFRP grids is too high (CR8); Furthermore, it is found that the M-N numerical values of the ten reinforcing designs of the CFRP-PCM method are distributed outside the corresponding M-N theoretical interaction curves, and these designs should be avoided in the corresponding reinforcing engineering.

Characterization of EVA/PCM/Silica Compound using Silica

  • Kim, Tae-Hyun;Choi, Kyung-Man;Lee, Jong-Hwan;Choi, Myeon-Cheon;Kim, Han-Seong
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.72-78
    • /
    • 2021
  • A phase-change material (PCM) is a material that has the ability to delay heat transfer by absorbing heat from its environment or releasing heat to its environment while its phase changes from solid to liquid or liquid to solid at a specific temperature. As it is applied, it can contribute to environmental conservation such as energy savings and carbon dioxide emission reduction. In order for a PCM to store and release heat, the volume change during its phase transition should be large, and thus a phase transition space is required. When a PCM is used as a polymer additive, it is confined within the polymer, and there is no phase transition space; thus, its ability to absorb and release heat is significantly reduced. Therefore, in this study, porous silica was used to provide EVA/PCM compounds with sufficient space for their phase transition, and to improve the compatibility between the EVA and PCM, modified silica is used: surface-modified 5 wt% silica with 3-methacryloxypropyltrimethoxysilane. The compound was prepared and compared with the silica compound. The presence or absence of the modified silica surface modification was confirmed using Fourier-transform infrared spectroscopy and thermogravimetric analysis, the heat capacity of the compound was evaluated based on a differential scanning calorimetry analysis, and its mechanical strength and morphology were determined using scanning electron microscopy.

상변화물질과 맥동형 히트 파이프를 이용한 배터리 열 관리 시스템에 대한 수치해석적 연구 (Numerical study on battery thermal management system using phase change material with oscillating heat pipe)

  • 박승현;추민기;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.104-114
    • /
    • 2024
  • To effectively control heat generation resulting from advancements in fast discharging technology for electric vehicle batteries, hybrid Battery Thermal Management Systems (BTMS) are gaining attention. In this study, a BTMS combining Phase Change Material (PCM) with Oscillating Heat Pipe (OHP) was designed. During the phase change process of the PCM, the maximum battery temperature increased slowly. Additionally, due to the excellent heat transfer capability of the OHP, the PCM/OHP BTMS delayed the time when the maximum battery temperature exceeded 50 ℃ by 810 s compared to the PCM/copper fin BTMS, resulting in the maximum battery temperature that was 41.29 ℃ lower at 3600 s. Furthermore, in the section where the latent heat of the PCM had the greatest impact, the slope of the battery temperature difference was 0.0017 lower than that of the PCM/copper fin BTMS. Therefore, the PCM/OHP BTMS demonstrates its potential as a viable hybrid BTMS.