DOI QR코드

DOI QR Code

Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films

미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성

  • Ji Won Yang (Department of Agricultural Chemistry, Chonnam National University) ;
  • Youn-Jun Lee (Department of Environmental and Safety Engineering, Ajou University) ;
  • Eun Hea Jho (Department of Agricultural Chemistry, Chonnam National University)
  • Received : 2023.07.19
  • Accepted : 2023.08.23
  • Published : 2023.09.30

Abstract

Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.

Keywords

Acknowledgement

This study was financially supported by the National Research Foundation of Korea (NRF-2021R1A2C4001746).

References

  1. de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24, 1405-1416. https://doi.org/10.1111/gcb.14020.
  2. Kutralam-Muniasamy G, Shruti VC, Perez-Guevara F, Roy PD (2023) Microplastic diagnostics in humans: "The 3Ps" Progress, problems, and prospects. Science of The Total Environment, 856, 159164. https://doi.org/10.1016/j.scitotenv.2022.159164.
  3. Nunes BZ, Moreira LB, Xu EG, Castro IB (2023) A global snapshot of microplastic contamination in sediments and biota of marine protected areas. Science of The Total Environment, 865, 161293. https://doi.org/10.1016/j.scitotenv.2022.161293.
  4. Ikenoue T, Nakajima R, Fujiwara A, Onodera J, Itoh M, Toyoshima J, Watanabe E, Murata A, Nishino S, Kikuchi T (2023) Horizontal distribution of surface microplastic concentrations and water-column microplastic inventories in the Chukchi Sea, western Arctic Ocean. Science of The Total Environment, 855, 159564. https://doi.org/10.1016/j.scitotenv.2022.159564.
  5. Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE (2020) A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations. Science of The Total Environment, 730, 139164. https://doi.org/10.1016/j.scitotenv.2020.139164.
  6. Choi YR, Kim Y-N, Yoon J-H, Dickinson N, Kim K-H (2021) Plastic contamination of forest, urban, and agricultural soils: A case study of Yeoju City in the Republic of Korea. Journal of Soils and Sediments, 21, 1962-1973. https://doi.org/10.1007/s11368-020-02759-0.
  7. Hur J, Jho EH (2021) Current research trends on the effects of microplastics in soil environment using earthworms: Mini-review. Journal of Korean Society of Environmental Engineers, 43(4), 299-306. https://doi.org/10.4491/KSEE.2021.43.4.299.
  8. Hasan MM, Jho EH (2022) Effect of microplastics on the germination and growth of terrestrial plants. Journal of Korean Society of Environmental Engineers, 44(10), 375-382. https://doi.org/10.4491/KSEE.2022.44.10.375.
  9. Tian L, Jinjin C, Ji R, Ma Y, Yu X (2022) Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.100311.
  10. Rasool S, Rasool T, Gani KM (2022) A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301.
  11. Wu C, Pan S, Shan Y, Ma Y, Wang D, Song X, Hu H, Ren X, Ma X et al. (2022) Microplastics mulch film affects the environmental behavior of adsorption and degradation of pesticide residues in soil. Environmental Research, 214, 114133. https://doi.org/10.1016/j.envres.2022.114133.
  12. Liu S, Che Z, Chen G (2016) Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 84, 56-61. https://doi.org/10.1016/j.cropro.2016.02.012.
  13. Lai Q, Sun X, Li L, Li D, Wang M, Shi H (2021) Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. Chemosphere, 272, 129577. https://doi.org/10.1016/j.chemosphere.2021.129577.
  14. Verdisson S, Couderchet M, Vernet G (2001) Effects of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Chemosphere, 44, 467-474. https://doi.org/10.1016/S0045-6535(00)00468-9.
  15. Rosen MB, Wilson VS, Schmid JE, Gray LE (2005) Gene expression analysis in the ventral prostate of rats exposed to vinclozolin or procymidone. Reproductive Toxicology, 19, 367-379. https://doi.org/10.1016/j.reprotox.2004.10.005.
  16. Sarker A, Lee S-H, Kwak S-Y, Nandi R, Kim J-E (2020) Comparative catalytic degradation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicide by laccase and MnO2 mediators. Ecotoxicology and Environmental Safety, 196, 110561. https://doi.org/10.1016/j.ecoenv.2020.110561.
  17. Vasileiadis S, Puglisi E, Papadopoulou ES, Pertile G, Suciu N, Pappolla RA, Tourna M, Karas PA, Papadimitriou F, Kasiotakis A et al. (2018) Blame it on the metabolite: 3,5-dichloroaniline rather than the parent compound is responsible for the decreasing diversity and function of soil microorganisms. Applied and Environmental Microbiology, 84(22), e01536-18. https://doi.org/10.1128/AEM.01536-18.
  18. Lee YJ, Yang JW, Choi B, Park SJ, Lee CG, Jho EH (2023) Changes in the toxicity of procymidone and its metabolite during the photohydrolysis process and the effect of the presence of microplastics. Korean Journal of Chemical Engineering, 40(3), 612-617. https://doi.org/10.1007/s11814-022-1231-z.
  19. Wang T, Yu C, Chu Q, Wang F, Lan T, Wang J (2020) Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere, 244, 125491. https://doi.org/10.1016/j.chemosphere.2019.125491.
  20. Mo Q, Yang X, Wang J, Xu H, Li W, Fan Q, Gao S, Yang W, Gao C, Liao D et al. (2021) Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. Environmental Pollution, 291, 118120. https://doi.org/10.1016/j.envpol.2021.118120.
  21. Wang Y, Liu C, Wang F, Sun Q (2022) Behavior and mechanism of atrazine adsorption on pristine and aged microplastics in the aquatic environment: Kinetic and thermodynamic studies. Chemosphere, 292, 133425. https://doi.org/10.1016/j.chemosphere.2021.133425.
  22. Sunta U, Prosenc F, Trebse P, Bulc TG, Kralj MB (2020) Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil. Chemosphere, 261, 127762. https://doi.org/10.1016/j.chemosphere.2020.127762.
  23. Li H, Wang F, Li J, Deng S, Zhang S (2021) Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere, 264, 128556. https://doi.org/10.1016/j.chemosphere.2020.128556.
  24. McDougall L, Thomson L, Brand S, Wagstaff A, Lawton LA, Petrie B (2022) Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Science of The Total Environment, 808, 152071. https://doi.org/10.1016/j.scitotenv.2021.152071.
  25. Ju WJ, An J, Jho EH (2021) Adsorption characteristics of Cd and Pb on microplastic films generated in agricultural environment. Journal of Korean Society of Environmental Engineers, 43, 32-42. https://doi.org/10.4491/KSEE.2021.43.1.32.
  26. El Nemr A, Khaled A, Abdelwahab O, El-Sikaily A (2008) Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Journal of Hazardous Materials, 152, 263-275. https://doi.org/10.1016/j.jhazmat.2007.06.091.
  27. Seo YJ, Lee RI, Jho EH (2022) Sorption characteristics of tetracycline in water on microplastics. Korean Journal of Environmental Agriculture, 41(4), 276-281. https://doi.org/10.5338/KJEA.2022.41.4.33.
  28. Park H, Singhal N, Jho EH (2015) Lithium sorption properties of HMnO in seawater and wastewater. Water Research, 87, 320-327. https://doi.org/10.1016/j.watres.2015.09.032.
  29. Razanajatovo RM, Ding J, Zhang S, Jiang H, Zou H (2018) Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Marine Pollution Bulletin, 136, 516-523. https://doi.org/10.1016/j.marpolbul.2018.09.048.
  30. Mondal T, Jho EH, Hwang SK, Hyeon Y, Park C (2023) Responses of earthworms exposed to low-density polyethylene microplastic fragments. Chemosphere, 333, 138945. https://doi.org/10.1016/j.chemosphere.2023.138945.
  31. Zhang S, Li L, Meng G, Zhang X, Hou L, Hua X, Wang M (2021) Environmental behaviors of procymidone in different types of Chinese soil. Sustainability, 13, 6712. https://doi.org/10.3390/su13126712.
  32. Guo X, Pang J, Chen S, Jia H (2018) Sorption properties of tylosin on four different microplastics. Chemosphere, 209, 240-245. https://doi.org/10.1016/j.chemosphere.2018.06.100.
  33. Beriot N, Zomer P, Zornoza R, Geissen V (2020) A laboratory comparison of the interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ, 8, e9876. https://doi.org/10.7717/peerj.9876.
  34. Jiang M, Hu L, Lu A, Liang G, Lin Z, Zhang T, Xu L, Li B, Gong W (2020) Strong sorption of two fungicides onto biodegradable microplastics with emphasis on the negligible role of environmental factors. Environmental Pollution, 267, 115496. https://doi.org/10.1016/j.envpol.2020.115496.
  35. Gong W, Jiang M, Han P, Liang G, Zhang T, Liu G (2019) Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics. Environmental Pollution, 254, 112927. https://doi.org/10.1016/j.envpol.2019.07.095.
  36. Fang S, Yu W, Li C, Liu Y, Qiu J, Kong F (2019) Adsorption behavior of three triazole fungicides on polystyrene microplastics. Science of The Total Environment, 691, 1119-1126. https://doi.org/10.1016/j.scitotenv.2019.07.176.