Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.2.123

Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings  

Han, Wei (Graduate School of Engineering, Nagasaki University)
Jiang, Yujing (Graduate School of Engineering, Nagasaki University)
Zhang, Xuepeng (College of Energy and Mining Engineering, Shandong University of Science and Technology)
Koga, Dairiku (Department of Disaster Management, Engineering Consultants Co.)
Gao, Yuan (Graduate School of Engineering, Nagasaki University)
Publication Information
Geomechanics and Engineering / v.25, no.2, 2021 , pp. 123-134 More about this Journal
Abstract
In this paper, the carbon fiber reinforced plastic (CFRP) grids embedded in polymer cement mortar (PCM) shotcrete (CFRP-PCM method) was conducted to repair the degraded tunnel linings with a cavity. Subsequently, the reinforcing effect of the CFRP-PCM method under different degrees of lining deterioration was quantitatively evaluated. Finally, the limit state design method of the M-N interaction curve was conducted to determine whether the structure reinforced by the CFRP-PCM method is in a safe state. The main results indicated that when the cavity is at the shoulder, the lining damage rate is more serious. In addition, the remarkably reinforcing effect on the degraded tunnel linings could be achieved by applying a higher grade of CFRP grids, whereas the optimization effect is no longer obvious when the grade of CFRP grids is too high (CR8); Furthermore, it is found that the M-N numerical values of the ten reinforcing designs of the CFRP-PCM method are distributed outside the corresponding M-N theoretical interaction curves, and these designs should be avoided in the corresponding reinforcing engineering.
Keywords
CFRP-PCM method; degraded tunnel lining; deterioration degree; M-N interaction curve;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Benzaama, A., Mokhtari, M., Benzaama, H., Gouasmi, S. and Tamine, T. (2018), "Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load", Adv. Aircraft Spacecr. Sci., 5(1), 129-139. https://doi.org/10.12989/aas.2018.5.1.129.   DOI
2 Fang, H., Xu, X., Liu, W.Q., Qi, Y.J., Bai, Y., Zhang, B. and Hui, D. (2016), "Flexural behavior of composite concrete slabs reinforced by FRP grid facesheets", Compos. Part B Eng., 92, 46-62. https://doi.org/10.1016/j.compositesb.2016.02.029.   DOI
3 Feiteira, J. and Ribeiro, M.S. (2013), "Polymer action on alkalisilica reaction in cement mortar", Cement Concrete Res., 44, 97-105. https://doi.org/10.1016/j.cemconres.2012.09.008.   DOI
4 Fraldi, M. and Guarracino, F. (2009), "Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 46(4), 665-673. https://doi.org/10.1016/j.ijrmms.2008.09.014.   DOI
5 FRP Grid Method Association of Japan (n.d), Design and construction manual of the Repair & reinforcement method for RC structures by FRP grid [O/L], http://www.frp-grid.com/01.html.
6 Fu, J.Y., Xie, J.W., Wang, S.Y., Yang, J.S., Yang, F. and Pu, H. (2019), "Cracking performance of an operational tunnel lining due to local construction defects", Int. J. Geomech., 19(4), 04019019. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001371.   DOI
7 Gaurav, A. and Signh, K.K. (2018), "Fatigue behavior of FRP composites and CNT-Embedded FRP composites: A review", Polym. Composite, 39(6), 1785-1808. https://doi.org/10.1002/pc.24177.   DOI
8 Ghasemi, S.H. and Nowak, A.S. (2018), "Reliability analysis of circular tunnel with consideration of the strength limit state", Geomech. Eng., 15(3), 879-888. http://doi.org/10.12989/gae.2018.15.3.879.   DOI
9 Guler, S., Oker B. and Akbulut Z.F. (2021), "Workability, strength and toughness properties of different types of fiber-reinforced wet-mix shotcrete", Structure, 31, 781-791. https://doi.org/10.1016/j.istruc.2021.02.031.   DOI
10 Guler, S. and Yavuz, D. (2019), "Post-cracking behavior of hybrid fiber-reinforced concrete-filled steel tube beams", Constr. Build. Mater., 205, 285-305. https://doi.org/10.1016/j.conbuildmat.2019.01.192.   DOI
11 Guler, S., Yavuz, D. and Aydin M. (2019), "Hybrid fiber reinforced concrete-filled square stub columns under axial compression", Eng. Struct., 198, 109504. https://doi.org/10.1016/j.engstruct.2019.109504.   DOI
12 Guler, S., Yavuz, D., Korkut, F. and Ashraf, A. (2018), "Strength prediction models for steel, synthetic, and hybrid fiber reinforced concretes", Struct. Concrete, 20(1), 428-445. https://doi.org/10.1002/suco.201800088.   DOI
13 Aalianvari, A. (2017), "Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage", Geomech. Eng., 13(4), 671-683. http://doi.org/10.12989/gae.2017.13.4.671.   DOI
14 Bansal, P.P. and Sidhu, R. (2017), "Mechanical and durability properties of fluoropolymer modified cement mortar", Struct. Eng. Mech., 63(3), 317-327. http://doi.org/10.12989/sem.2017.63.3.317.   DOI
15 Guo, R., Pan, Y., Cai, L.H. and Hino, S. (2018), "Study on design formula of shear capacity of RC beams reinforced by CFRP grid with PCM shotcrete method", Eng. Struct., 166, 427-440. https://doi.org/10.1016/j.engstruct.2018.03.095.   DOI
16 Hu, J., Li, S.C., Liu, H.L., Li, L.P., Shi, S.S. and Qin, C.S. (2020), "New modified model for estimating the peak shear strength of rock mass containing nonconsecutive joint based on a simulated experiment", Int. J. Geomech., 20(7), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001732.   DOI
17 Japan Iron and Steel Federation Steel Fiber Reinforced Concrete Revision Committee (2002), Steel Fiber Reinforced Concrete Design and Construction Manual, GIHODO SHUPPAN Co., Ltd, Tokyo, Japan.
18 Jiang, Y.J., Wang, X.S., Li, B., Higashi, Y., Taniguchi, K. and Ishid, K. (2017) "Estimation of reinforcing effects of FRP-PCM method on degraded tunnel linings", Soils Found., 57, 327-340. https://doi.org/10.1016/j.sandf.2017.05.002.   DOI
19 Jeffrey, J.B., Lawrence, C.B. and Michael, G.O. (2016), "Punching shear failure in double-layer pultruded FRP grid reinforced concrete bridge decks", Adv. Struct. Eng., 15(4), 601-613. https://doi.org/10.1260/1369-4332.15.4.601.   DOI
20 Jeng, F., Lin, M.L. and Yuan, S.C. (2002), "Performance of toughness indices for steel fiber reinforced shotcrete", Tunn. Undergr. Sp. Tech., 17(1), 69-82. https://doi.org/10.1016/S0886-7798(01)00065-7.   DOI
21 Joong, K.J. Woo, S.K. Gyu, Y.K. and Chan, K.J. (2016), "Polyamide fiber reinforced shotcrete for tunnel application", Materials, 9(3), 163. https://doi.org/10.3390/ma9030163.   DOI
22 Kishi, N., Zhang, G. and Mikami, H. (2005), "Numerical cracking and debonding analysis of RC beams reinforced with FRP sheet", J. Compos. Constr., 9(6), 507-514. https://doi.org/10.1061/(asce)1090-0268(2005)9:6(507).   DOI
23 Lalague, A., Lebens, M.A., Hoff, I. and Grov, E. (2016), "Detection of rockfall on a tunnel concrete lining with ground-penetrating radar (GPR)", Rock Mech. Rock Eng., 49(7), 2811-2823. https://doi.org/10.1007/s00603-016-0943-y.   DOI
24 Lee, J.K. and Lee, J.H. (2002), "Nondestructive evaluation on damage of carbon fiber sheet reinforced concrete", Compos. Struct., 58 (1), 139-147. https://doi.org/10.1016/S0263-8223(02)00029-6.   DOI
25 Li, Z.X., Li, C.H., Shi Y.D. and Zhou X.J. (2017), "Experimental investigation on mechanical properties of hybrid fibre reinforced concrete", Constr. Build. Mater., 157, 930-942. https://doi.org/10.1016/j.conbuildmat.2017.09.098.   DOI
26 Nishi, Y., Tsuchikura, N., Nanba, S., Yamamoto, T. and Faudree, M.C. (2012), "Charpy impact of sandwich structural composites (CFRP/PC/CFRP) of polycarbonate (PC) cores covered with carbon fiber cross textile reinforced epoxy polymer (CFRP) thin sheets as a function of temperature", Mater. Trans., 53(7), 1288-1294. https://doi.org/10.2320/matertrans.M2011357.   DOI
27 Maalej, M. and Leong, K.S. (2005), "Effect of beam size and FRP thickness on interfacial shear stress concentration and failure mode of FRP-strengthened beams", Compos. Sci. Technol., 65(7), 1148-1158. https://doi.org/10.1016/j.compscitech.2004.11.010.   DOI
28 Makeev, A., Ghaffari, S. and Seon, G. (2019), "Improving compressive strength of high modulus carbon-fiber reinforced polymeric composites through fiber hybridization", Int. J. Eng. Sci., 142, 145-157. https://doi.org/10.1016/j.ijengsci.2019.06.004.   DOI
29 Mofidi, A. and Chaallal, O. (2014), "Tests and design provisions for reinforced-concrete beams strengthened in shear using FRP sheets and strips", Int. J. Concr. Struct. Mater., 8(2), 117-128. https://doi.org/10.1007/s40069-013-0060-1.   DOI
30 Rabia, B., Hassaine, T. and Abderezak. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. http://doi.org/10.12989/eas.2019.16.5.601.   DOI
31 Rajak, D.K., Pagar, D.D., Menezes, P.L. and Linul, E. (2019), "Fiber-reinforced polymer composites: Manufacturing, properties, and applications", Polymers, 11, 1667. https://doi.org/10.3390/polym11101667.   DOI
32 Razavi, M.R. and Mustaffa, Z. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP patch", Steel Compos. Struct., 26(2), 151-161. http://doi.org/10.12989/scs.2018.26.2.151.   DOI
33 Sumathi, A. and Arun, V.S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concr. Constr., 5(6), 625-638. http://doi.org/10.12989/acc.2017.5.6.625.   DOI
34 Schrefler, B.A., Codina, R. and Principe, F.P. (2011), "Thermal coupling of fluid flow and structural response of a tunnel induced by fire", Int. J. Numer. Meth. Eng., 87(1-5), 361-385. https://doi.org/10.1002/nme.3077.   DOI
35 Singh, S. and Patra, N.R. (2020), "Axial dynamic response of concrete-filled tapered fiber reinforced polymer piles in a transversely isotropic medium", Comput. Geotech., 123, 103557. https://doi.org/10.1016/j.compgeo.2020.103557.   DOI
36 Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P. and Songpiriyakij, S. (2018), "Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer", Constr. Build. Mater., 161(2), 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122.   DOI
37 Tonon, F. (2010), "Sequential excavation, NATM and ADECO: What they have in common and how they differ", Tunn. Undergr. Sp. Tech., 25(3), 245-265. https://doi.org/10.1016/j.tust.2009.12.004.   DOI
38 Ye, Z.J. and Ye, Y. (2019), "Comparison of detection effect of cavities behind shield tunnel segment using transient electromagnetic radar and ground penetration radar", Geotech. Geol. Eng., 37(5), 4391-4403. https://doi.org/10.1007/s10706-019-00916-y.   DOI
39 Yue, Q.R., Liu, Z.Q., Li, R. and Chen, X.B. (2016), "Experimental investigation into the development length of carbon-fiber-reinforced polymer grids in concrete", Adv. Struct. Eng., 20(6), 953-962. https://doi.org/10.1177/1369433216668360.   DOI