• Title/Summary/Keyword: pavement foundation

Search Result 57, Processing Time 0.03 seconds

Analysis of Relation between Foundation Stiffness and Deformation below Widening Portland Cement Concrete Pavement Sections (시멘트 콘크리트 포장확장시 포장하부지반의 강성과 변위발생의 상관성 분석)

  • Yang, Sung-Chul;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • Poor compaction of subgrade soil causes low stiffness and bearing capacity of sublayers so that faulting and differential settlements can be generated between new and old pavement surfaces in case of widening works. However, investigation of verifying the reason of producing the defects in the pavements are not performed in detail. In this study, several in-field tests including PMT and PBT were performed for obtaining stiffness of the sublayers in new and old pavements respectively of an widening project. Then, based on the obtained stiffness values and the measured deformations obtained by specially designed tilt meters, the main reasons of generating different deformations between the old and new pavement sections and the relationship between the deformation and stiffness are verified.

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

Vibration Analysis of Orthortopic Composite Plate According to Elastic Reaction Effect (탄성반력의 영향에 따른 직교 이방성 복합판의 고유 진동 해석)

  • Jung, Young-Hwa;Shim, Do-Sik;Kim, Kyoung-Jin;Lee, Se-Jin
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.199-204
    • /
    • 1997
  • In this paper, the result of application of vibration method to the orthotropic plates with free edges supported on elastic foundation and with a pair of opposite edges under axial forces is presented. Such plates represent the concrete highway slab and hybrid composite pavement of bridges. The reinforced concrete slab can be assumed as a special orthotropic plate, as a close approximation. The highway slab is supported on elastic foundation, with free boundaries. Sometimes, the pair of edges perpendicular to the traffic direction may be subject to the axial forces. The plate is subject to the concentrated load/loads, in the form of traffic loads, or the test equipments. Finite difference method is used to obtain the deflection influence surfaces needed for vibration analysis. The influence of the modulus of the foundation, the aspect ratio of the plate, and the magnitudes of the axial forces and the concentrated attached mass on the plate, under the natural frequency is thoroughly studied.

  • PDF

Analysis of Joint Behavior in Cement Concrete Pavements (시멘트 콘크리트 포장체 줄눈부의 거동해석)

  • 변근주;이상민;임갑주;한봉완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF

Vibration analysis of special orthortopic plate with free edges supported on elastic foundation and with a pair of opposite edges under axial forces (탄성기초에 지지되고 양단 축하중을 받는 특별직교 이방성 판의 진동해석)

  • 김덕현;원치문;정경일;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.327-334
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and toll.or structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates with free edges supported on elastic foundation and with a pair of opposite edges under axial forces is presented. Such plates represent the concrete highway slab and hybrid composite pavement of bridges. The reinforced concrete slab can be assumed as a special orthotropic plate, as a close approximation. The highway slab is supported on elastic foundation, with free boundaries. Sometimes, the pair of edges perpendicular to the traffic direction may be subject to the axial forces. The plate is subject to the concentrated load/loads, in the form of traffic loads, or the test equipments. Any method nay be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation, the aspect ratio of the plate, and the magnitudes of the axial forces and the concentrated attached mass on the plate, on the natural frequency is thoroughly studied.

  • PDF

Relationship between Concrete Pavement Stresses under Multi-Axle Interior and Edge Loads (중앙부와 모서리부 다축 차량 하중에 의한 콘크리트 도로포장의 응력 상관관계)

  • Kim Seong-Min;Cho Byoung-Hooi;Ryu Sung-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.143-153
    • /
    • 2006
  • The differences in the stress distribution and the critical stresses in concrete pavement systems were analyzed when the dual-wheel single-, tandem-, and tridem-axle loads were applied at the interior and the edge of the pavement. The effects of the concrete elastic modulus, slab thickness, foundation stiffness, and tire contact pressure were investigated. The stresses under the interior loads were calculated using the transformed field domain analysis and stresses under the edge loads were obtained using the finite element method. The critical stresses under the interior and the edge loads were compared with respect to various parameters and the equations to predict the ratio between the stresses under the edge and the interior loads were developed and verified. From this study, it was found that the trends of the changes in the critical concrete stresses under the interior and the edge loads were very similar and the critical stress locations under those loads were identical. The critical stress ratio, which was obtained by dividing the critical stress under the edge loads into that under the interior loads, decreased with increasing the number of axles. That ratio became larger as the concrete elastic modulus increased, the slab thickness increased, the foundation stiffness decreased, and the tire contact pressure increased.

  • PDF

Advanced model of subbases for the multi-layered pavement system (다층 포장 구조체의 개선된 지반 모델)

  • 조병완;이계삼
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.53-56
    • /
    • 1995
  • Despite the recent development of structural analysis programs for the CRCP pavements over Westergaard's equations and finite element techniques, the Winkler foundations which are modelled by series of vertical springs at the nodes are generally used for the computer modelling of subbases under the concrete slab. Herewith, two parameter of soil foundation model is adopted as the most convenient mathematical model to enable deflections outside the loaded area to be effected and to upgrade the Winkler foundations. This paper highlights the derivations of finite element method for the two-parameter soil foundation model in the concrete pavements.

  • PDF

Vibration Analysis of Special Orthotropic Plates on Elastic Foundation with Arbitrary Boundaries (자유경계를 갖고 탄성기초에 놓인 특별직교이방성 적층복합판의 진동해석)

  • 김덕현;이정호;홍창우;심도식
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 1999
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the concrete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

  • PDF

Effect of Thermal Environment by Green Roof and Land Cover Change in Detached Housing Area (옥상녹화 및 토양피복 변화가 단독주택지 외부 열환경에 미치는 영향 분석)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.27-47
    • /
    • 2011
  • Used as foundation resources for environment improvement and preservation of single-housing residential area by practicing classification of biotope with the concept of ecological area rate applied and performing urban thermal environment prediction simulation. Biotope is classified as seven types according to classification of biotope which is carried out with the concept of ecological area rate applied. The classification is listed below in descending order: building biotope(48.16%), impervious pavement biotope(39.75%), greenspace biotope(6.23%), crack permeable pavement biotope(3.26%), whole surface permeable pavement biotope(2.51%), parts permeable pavement biotope(0.04%). As a result of analysing prediction of variation and characteristics of thermal environment of single-housing residential area, land surface temperature per types of biotope are evaluated as listed below in descending temperature order: impervious pavement biotope > building biotope > greenspace biotope > permeable pavement biotope. In case 2 where vegetated roof hypothetically covers 100% of the roof area, temperature is predicted to be $33.58^{\circ}C$ Max, $23.85^{\circ}C$ Min, and $27.74^{\circ}C$ Avg. which is Approximately $5.19^{\circ}C$ lower than a non-vegetated roof. Average outdoor temperature for case 2 is studied to be $0.18^{\circ}C$ lower than case 1.

  • PDF