• Title/Summary/Keyword: pattern transfer

Search Result 795, Processing Time 0.025 seconds

Transfer of patterns from thin film to patterning-resist substrate

  • Ha, Neul-Bit;Park, Ji-Seon;Jeong, Sol;Im, Hye-In;Kim, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.266-266
    • /
    • 2010
  • Ion beam sputtering(IBS)을 이용한 pattern 형성은 대상 물질의 제한이 적고 물리적 변수의 조절에 의해 쉽게 nano 구조의 형태와 크기를 조절할 수 있다는 점에서 관심을 받아오고 있다. 하지만 IBS를 이용한 pattern 형성이 어려운 물질들도 있어 다양한 기판에서의 nano pattern 형성에 관련된 많은 연구가 보고되고 있다. 본 연구발표에서는 유용한 반도체인 Si 표면에서의 IBS를 이용한 nano 구조 형성이 가능함과 그 과정에 대해 말하고자 한다. Ru을 100nm 두께로 증착시킨 Si(100)을 sputter 했을 때, Ru 표면에 잘 order된 nano pattern이 형성되었다. Sputter 시간이 증가하면서 pattern은 유지된 채 Ru이 깎여 나가다가 pattern의 가장 낮은 부분부터 Si기판이 드러나게 된다. 이 때 노출된 Si은 sputtering에 의해 깎여나가고 아직 Ru이 덮여있는 부분의 Si은 그대로 유지되어, Ru이 모두 sputter 되면서 보여지는 Si의 pattern은 Ru의 그것과 동일한 형태를 띄게 된다. 그 결과, Ru의 pattern이 Si으로 transfer되었음을 AFM과 SAM을 통해 확인할 수 있었다. 또한 IBS를 이용해 pattern 형성이 힘든 metallic glass에도 같은 방식으로 Ru을 쌓아 sputter 해봄으로써 pattern transfer를 확인해 볼 계획이다. 이러한 pattern transfer는 sputtering을 통한 pattern 형성이 어려웠던 다른 물질들에 그 가능성이 있음을 보여주고 있어 sputtering의 응용 폭이 넓어질 것을 기대한다.

  • PDF

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process (공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

Analysis of User's Travel Pattern and Bus Service Satisfaction Index for Public Transportation Reform in Daegu (대구시 대중교통체계 개편에 따른 이용자 통행패턴 및 시내버스 서비스 만족도 분석)

  • Hwang, Jeong-Hun;Kim, Gap-Su;Jeon, Jong-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.53-62
    • /
    • 2006
  • The aim of this paper is to analyze the changes in the travel pattern of public transit users, service satisfaction before and after public transportation system reform in Daegu. For this purpose, we conducted a survey of people on public transit users and the results of study are as follows : First, it was found that transfer trip had increased, especially concerning the changes of travel pattern from bus trip to the transfer trip between the bus and subway. Because it makes a financial sense to transfer based on free charge transfer system. Secondly, the transfer satisfaction was improved for public transit users, but they are still reluctant to use transfer system.

Molecular Dynamics Study on the Pattern Transfer in Nanoimprint Lithography (분자 동역학을 이용한 나노임프린트 리소그래피에서의 패턴 전사에 관한 연구)

  • Kang Ji-Hoon;Kim Kwang-Seop;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.177-184
    • /
    • 2005
  • The molecular dynamics simulation of nanoimprint lithography (NIL) using $SiO_2$ stamp and amorphous poly-(methylmethacrylate) (PNMA) film is performed to study pattern transfer in NIL. Force fields including bond, angle, torsion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and $SiO_2$ stamp. Nose-Hoover thermostat is used to control the system temperature and cell multipole method is adopted to treat long range interactions. The deformation of PMMA film is observed during pattern transfer in the NIL process. For the detail analysis of deformation characteristics, the distributions of density and stress in PMHA film are calculated. The adhesion and friction forces are obtained by dividing the PMMA film into subregions and calculating the interacting force between subregion and stamp. Their effects on the pattern transfer are also discussed as varying the indentation depth and speed.

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF

Influence of Refrigeration Oil on Evaporation Heat Transfer of R-134a in a Horizontal Micro-Fin Tube (냉동유가 수평 마이크로 핀관내 R-134a의 증발열전달에 미치는 영향)

  • 배상철;강태욱;김정훈;정찬영;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.140-150
    • /
    • 1996
  • CFC-12, which has been used most widely in automobile air conditioners and household refrigerators is scheduled to be phased out soon because of its high ozone depletion potential. Now HFC-134a is suggested as an alternative refrigerant for CFC-12. In this Study, we intended to investigate how PAG oil influence evaporation heat transfer and flow pattern, using R-134a and PAG oil influences evaporation heat transfer and flow pattern, using R-134a and PAG oil in the horizontal miro-fin evaporation tube. Experiments were conducted under the flowing est conditions : mass velocity 86-250kg/$m^2$s, heat flux 5-30 ㎾/$m^2$, oil concentration 0-21 wt.% and saturation temperature 5$^{\circ}C$. Local evaporation heat transfer coefficients were found to be higher at the top, side and bottom of the tube in this order. Average heat transfer coefficients turned out to increase with oil concentration increment up to 3 wt.% oil concentration, whereas heat transfer coefficients gradually decreased over 3 wt.% oil concentration, because of oil-rich liquid film was formed on the heat transfer surface. Flow patterns were rapidly transitioned to annular regimes up to 3 wt.% oil concentration. In case of pure refrigerant, measured heat transfer coefficients in the experiments were similar to those of Kandlikar's correlation.

  • PDF

Numerical calculation of contrast transfer function for periodic line-space patterns (주기적인 선물체에 대한 Contrast Transfer Function의 수치계산)

  • 김형수;전영세;이종웅;김성호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.396-402
    • /
    • 1998
  • The measurement of OTF(optical transfer function) is used for evalution of imaging performance of optical system as a standard method. In the mass-production, the contrast measurement of projected patterns is also popular because of its simplicity. In this study, a computer program which evaluates the CTF(contrast transfer function) of optical system for periodic line-space patterns is developed by using the diffraction imaging theory. The MTF(modulation transfer function) and CTF of an aberrated system are evaluated and analyzed for the third order aberrations expressed by the C-coefficients and the Zemike polynomials.

  • PDF

Formative Application using Stitch Transfer Knitting Structure - Focused on Making Process of Women's Knitwear - (스티치 트랜스퍼 니트 조직의 조형적 적용 - 여성 니트웨어 제작과정을 중심으로 -)

  • Kim, Seong-Dal
    • Fashion & Textile Research Journal
    • /
    • v.8 no.5
    • /
    • pp.562-570
    • /
    • 2006
  • Knit industry requires versatile knit designers who have to control whole process such as material select, color, type of machine, technique, structure and shape. In other words, knit designers urgently need to interplay between technology and design aesthetics. It becomes essential to learn and master basic principles of knitting in order to design and develop effectively for innovative knitwear design. The main purpose of this study is to show fresh methodology through examining the various applications of 'Stitch transfer knitting structure' used in women's knitwear design development. Stitch transfer knitting structure is one of the most popular techniques among various basic knitting methods. Eight knitwears were designed and produced with various types of formative applications which differ from existent stitch transfer knitwears of flat and simple style in the market. These are produced by computer knitting machine 'Shima Seiki 122S' and programmed by 'Knit CAD' software. Among various basic stitch transfer pattern, 'Leaf' pattern is selected as a most effective example for this study. This fabric applied to collar, sleeves, body pattern and accessories as formative decoration. It is expected that this study of methodology helps to get open mind and to indicate possibility to develop and show creative and innovative knitwear and knitted textile design.

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.