• Title/Summary/Keyword: path loss

Search Result 793, Processing Time 0.033 seconds

Path Loss and Delay Characteristics According to Various Antennas at 2.45GHz in Subway Tunnel Environment (지하철 터널 환경에서 다양한 안테나에 따른 2.45GHz 대역의 경로손실 및 지연 특성)

  • Kong Min-Han;Park Noh-Joon;Kang Young-Jin;Song Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.162-168
    • /
    • 2006
  • Understanding of propagation characteristics is very important for the wireless communication system design and wireless communication service construction. In this paper, propagation characteristics is measured and analyzed at 2.45Ghz frequency band under curved subway tunnel environment. We constituted channel measurement system with sliding correlation and five different kind of antennas. The purpose of five different type of antennas is to compare propagation characteristics according to beam shape of antennas. The path loss under tunnel environment is average $4.38^{\sim}14.41dB$ lower than free space and circular polarization antenna marked smallest path loss. Also, path loss is smallest when the receiver antenna located outside of tunnel in th curved section. 90% of delay components of all antennas measured within 20ns and directional antenna has more wide coherence bandwidth than omni-directional antenna. According to measured result, when we consider path loss and delay characteristics, circular polarization antenna is most suitable under tunnel environment.

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band (5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석)

  • Kim, Hyeong Jung;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.688-693
    • /
    • 2022
  • In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.

Empirical millimeter-wave wideband propagation characteristics of high-speed train environments

  • Park, Jae-Joon;Lee, Juyul;Kim, Kyung-Won;Kwon, Heon-Kook;Kim, Myung-Don
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.377-388
    • /
    • 2021
  • Owing to the difficulties associated with conducting millimeter-wave (mmWave) field measurements, especially in high-speed train (HST) environments, most propagation channels for mmWave HST have been studied using methods based on simulation rather than measurement. In this study, considering a linear cell layout in which base stations are installed along a railway, measurements were performed at 28 GHz with a speed up to 170 km/h in two prevalent HST scenarios: viaduct and tunnel scenarios. By observing the channel impulse responses, we could identify single- and double-bounced multipath components (MPCs) caused by railway static structures such as overhead line equipment. These MPCs affect the delay spread and Doppler characteristics significantly. Moreover, we observed distinct path loss behaviors for the two scenarios, although both are considered line-of-sight (LoS) scenarios. In the tunnel scenario, the path loss exponent (PLE) is 1.3 owing to the waveguide effect, which indicates that the path loss is almost constant with respect to distance. However, the LoS PLE in the viaduct scenario is 2.46, which is slightly higher than the free-space loss.

The Measurement and Prediction of Transmission loss through Dash Panel (대시 패널의 투과손실 측정 및 예측)

  • Kim Jung Soo;Kang Yeon June
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.191-194
    • /
    • 2004
  • This study Is an measurement and prediction of transmission loss through dash panel with multi-path in a vehicle. Measurement results of transmission loss are decided by sound power measured using the sound intensity method under locating a sound source in the anechoic room and reverberant room, respectively. Prediction one is decided by multi-path analysis of dash panel composed by a various part of materials and complicated shape. Finally, two results show a great agreement between measured and predicted transmission loss.

  • PDF

Complete Time Algorithm for Stadium Construction Scheduling Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.81-86
    • /
    • 2015
  • This paper suggests heuristic algorithm with linear time complexity to decide the normal and optimal point at minimum loss/maximum profit maximum shortest scheduling problem with additional loss cost and bonus profit cost. This algorithm computes only the earliest ending time for each node. Therefore, this algorithm can be get the critical path and project duration within O(n) time complexity and reduces the five steps of critical path method to one step. The proposed algorithm can be show the result more visually than linear programming and critical path method. For real experimental data, the proposed algorithm obtains the same solution as linear programming more quickly.

Radio Propagation Characteristics in Subway Tunnel at 2.65 GHz (지하철 터널 환경에서 2.65 GHz 대역신호의 전파전파 특성)

  • Choi Myung-Sun;Kim Do-Youn;Jo Han-Shin;Mun Cheol;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.541-548
    • /
    • 2005
  • The research deals with the prediction and the measurement of electromagnetic wave propagation in rectangular shaped tunnels at f=2.65 GHz. The received power level was measured in the straight and the curved tunnel by using a spectrum analyzer and Satellite DMB mobile phone. Thus we have gotten the data for two cases, the straight and the curved tunnel whose radius is 300m. In addition, the prediction of wave propagation was conducted based on the ray-launching method, in same tunnel where measurement was performed. A good agreement of the measured and the predicted path loss could be confirmed. The measured path loss shows a marked difference in propagation loss: the path-loss exponent, 3.21, and 3.98, for a straight and a curved tunnel, respectively. The reason that path-loss exponent is high in a curved tunnel is that there is no direct wave but only the reflected waves, which attenuates rapidly with distance due to multiple reflections. Also the predicted path loss shows path loss exeponent, 3.2 and 3.95, for a straight and a curved tunnel which are similar to the simulation results.

On the Effect of Tube Attenuation on Measuring Water Vapor Flux Using a Closed-path Hygrometer (폐회로 습도계를 이용한 수증기 플럭스 관측시관의 감쇠 효과에 관하여)

  • Hong Jinkyu;Kim Joon;Choi Taejin;Yun Jin-il;Tanner Bert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.3
    • /
    • pp.80-86
    • /
    • 2000
  • Eddy covariance method is widely used in measuring vertical fluxes of mass and energy between the atmosphere and the biosphere. In this method, scalar concentration is measured with either open-path or closed-path sensors. For the latter, fluctuations of scalar concentration are attenuated as the sample travels through a long tube, resulting in flux loss. To quantify this tube attenuation, water vapor concentrations measured with both closed-path and open-path sensors were analyzed. Our statistical analysis showed that the power spectral density obtained from the closed-path sensor was different from that from the open-path sensor in the frequency range of > 0.5 Hz. The loss of water vapor flux due to tube attenuation was < 5% during midday. At nighttime, however, the flux loss increased significantly because of the low wind speeds and the weak turbulence sources. Theoretical calculation for the tube attenuation showed a small bias in high frequency range probably because of the interaction of sticky water vapor with a tube wall.

  • PDF

Smart Suction Muffler for a Reciprocating Compressor (왕복동 압축기에서의 고효율, 저소음 흡입머플러 개발)

  • Ju, Jae-Man;Choe, Jin-Gyu;O, Sang-Gyeong;Park, Seong-U
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1429-1436
    • /
    • 2000
  • Suction muffler is one of the important component of a compressor for low noise level and high efficiency. The suction muffler which has the complicated flow path gives the higher transmission loss of sound, but lower efficiency of compressor results from the superheating effect and flow loss in suction flow path. It is shown that the computational analysis of fluid dynamics are very popular methods for designing of high performance and low noise suction muffler. To reduce the thermodynamic and flow loss in suction process, the flow path of suction muffler was estimated by FVM(Finite Volume Method) and verified by experiments. And to enlarge the transmission loss of sound, the acoustic properties inside the suction muffler was analyzed by FEM(Finite Element Method) and experiments. The smart muffler which gives a good efficiency and low noise character was developed by using those methods, and the effect was evaluated in compressor by experiment.

  • PDF

Performance Analysis of Communication Systems with Penetration Loss of Building Materials in Pico-cell Environment (실내 피코셀 환경에서 건물 재질의 투과손실을 고려한 통신 시스템의 성능 분석)

  • Lee Yang-Sun;Kang Heau-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.920-926
    • /
    • 2005
  • In this paper, we analyzed the effect by building materials in the case of floor cell design and the penetration loss value by material in each frequency bands through an experiment in high building. Specially, the penetration loss measured about interference signal that is received to direct path, interference signal and flowed in slant path. Also, we analyzed system performance according to path of standard Cell received interference signal.

A Position Revision Method by Path-Loss Factor in GIS based Wireless Sensor Node Deployments (GIS기반 무선 센서노드 배치에서 경로손실을 고려한 위치 보정 방법)

  • Bae, Myung-Nam;Kwon, Hyuk-Jong;Kang, Jin-A;Lee, In-Hwan
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.111-121
    • /
    • 2011
  • In this paper, we proposes a sensor node positioning algorithm that utilizes the geo-spatial elements and considers the factors to represent the propagation loss generated by the various obstacles in the urban wireless environments. First, we measures the propagation loss about the radio frequencies in major road of the urban, and defines the correlation between the measured loss and the environment information for the road and its surrounding get from Urban GIS. Secondly, through the utilization of the loss-environment correlation, we describes the detailed instruction for requiring the radio coverage decision and deploy system implementation for the wireless sensor node in urban. By the consideration of interference factor by the building and the linear structure of road, we can evaluate the path loss below 5dB RMS error. And, we proposes the way to revise the sensor node deployment based on the corelation and the measured path loss.