DOI QR코드

DOI QR Code

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band

5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석

  • Kim, Hyeong Jung (Department of Information Communciataion Engineering, Chosun University) ;
  • Choi, Dong-You (Department of Information Communciataion Engineering, Chosun University)
  • Received : 2022.02.21
  • Accepted : 2022.03.14
  • Published : 2022.05.31

Abstract

In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.

본 논문에서는 5G 이동통신에 활용되고 있는 주파수 대역인 3.7 GHz, 28 GHz에 대한 건물 복도에서 채널 전파 경로손실을 측정하고, CI (Close-In), FI (Floating-Intercept) 채널 모델과 비교·분석하였다. 전파 경로손실 측정을 위해 송신기 (Tx)로부터 수신기 (Rx)를 10 m 씩 이동시키며 측정을 수행하였다. 측정 결과 3.7 GHz, 28 GHz에서의 CI 모델의 PLE (Path Loss Exponent)값은 각각 1.5293, 1.7795이며, 표준편차는 각각 9.1606, 8.5803으로 분석되었다. FI 모델에서 α값은 각각 79.5269, 70.2012, β값은 각각 -0.6082, 1.2517이며, 표준편차는 각각 5.8113, 4.4810으로 분석되었다. CI 모델과 FI 모델을 통한 분석 결과에서 FI 모델의 표준편차가 CI 모델에 비해 적으므로 FI 모델이 실제 측정 결과와 유사함을 알 수 있었다.

Keywords

References

  1. F. D. Diba, M. A. Samad, and D. -Y. Choi, "Centimeter and Millimeter-Wave Propagation Characteristics for Indoor Corridor: Result From Measurements and Models," IEEE Access, vol. 9, pp. 158726-158737, Nov. 2021. https://doi.org/10.1109/ACCESS.2021.3130293
  2. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, "Wireless communications and applications above 100 ghz: Opportunities and challenges for 6g and beyond," IEEE Access, vol. 7, pp. 78729-78757, Jun. 2019. https://doi.org/10.1109/access.2019.2921522
  3. O. Kanhere and T. S. Rappaport, "Position location for futuristiccellular communications: 5g and beyond," IEEE Communications Magazine, vol. 59, no. 1, pp. 70-75, Jan. 2021.
  4. K. Haneda, J. Zhang, L. Tan, G. Liu, Y. Zheng, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li, T. Balercia, S. Lee, Y. S. Kim, A. Ghosh, T. Thomas, T. Nakamura, Y. Kakishima, T. Imai, H. Papadopoulos, T. S. Rappaport, G. R. MacCartney, M. K. Samimi, S. Sun, O. Koymen, S. Hur, J. Park, C. Zhang, E. Mellios, A. F. Molisch, and S. S. Ghassamzadeh, "5g 3gpp-like channel models for outdoor urban microcellular and macrocellular environments," in 2016 IEEE 83rd vehicular technology conference (VTC spring). IEEE, Nanjing, China, vol. 83, pp. 1-7, May. 2016.
  5. H. K. Rath, S. Timmadasari, B. Panigrahi, and A. Simha, "Realistic indoor path loss modeling for regular wifi operations in india," in 2017 Twenty-third National Conference on Communications (NCC). IEEE, Chennai, India, pp. 1-6. Mar. 2017.
  6. H. -S. Jo, D. -Y. Kim, and J. -G. Yook, "Path Loss characteristics in subway Tunnel at 2.65GHz," The journal of Korea Information and Communications Society, vol. 31, no. 10A, pp. 1014-1017, Dec. 2006.
  7. M. A. Samad and D. -Y. Choi, "Analysis and Modeling of Propation in Tunnel at 3.7 and 28 GHz," CMC-COMPUTERS MATERIALS & CONTINUA, vol. 71, no. 2, pp. 3127-3143, Dec. 2021.
  8. S. Sun, T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovacs, I. Rodriquez, O. Koymen, and A. Partyka, "Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications," IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843-2860, May. 2016. https://doi.org/10.1109/TVT.2016.2543139
  9. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, "Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design," IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029-3056, Sep. 2015. https://doi.org/10.1109/TCOMM.2015.2434384
  10. G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, "Path loss models for 5G millimeter wave propagation channels in urban microcells," in 2013 IEEE Global Communications Conference(GLOBECOM), Atlanta, GA, pp. 3948-3953, Dec. 2013.