• Title/Summary/Keyword: passive mixer

Search Result 35, Processing Time 0.024 seconds

Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry (미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구)

  • Yoon, Joon-Yong;Han, Gyu-suk;Byun, Sung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.275-281
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method was employed to simulate mixing performance of Passive mixer in a micro-channel. It physically analyzed stream line and Pressure drop for passive mixer in a micro-channel. The flow characteristics in a micro-channel was a function of Peclet number. The results indicated that the size of static element was more effect on the mixing than the number of static element and the distance of static elements.

Fabrication and Mixing Characteristics of a Micro-Mixer with a Quasi-Active Rotor (준 능동형 로터를 이용한 마이크로 혼합기의 제작 및 혼합특성)

  • Kim, Young-Dae;Lee, Jong-Kwang;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.417-424
    • /
    • 2009
  • A micro-mixer with a quasi-active rotor was fabricated, and mixing characteristics were evaluated. The proposed micro-mixer combines an active type micro-mixer with a passive type micro-mixer. The micro-rotor, which is a moving part of an active type micro-mixer, is added in a micro-chamber of a passive type vortex micro-mixer. The rotor rotated by inflows tangent to a chamber, causing strong perturbations. The micro-mixers were fabricated using photosensitive glass. Mixing efficiency of the micro-mixers was measured using an image analysis method. Mixing efficiency and characteristics of the micro-rotor mixer were compared with the vortex micro-mixer without a rotor. Mixing efficiency was reduced as Reynolds number increased at a low Reynolds number due to decrease of residence time. Mixing efficiency at higher Reynolds number, on the other hand, was improved even though residence time decreased since the contact surface between fluids increased by twisted flow. The perturbation induced by rotating rotor at greater than Re 200 improved the efficiency of the rotor mixer.

Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Bloltzmann Method (격자 볼츠만 방법을 이용한 미소 채널에서의 혼합효율 증가를 위한 수동형 믹서의 최적화)

  • Han Gyu suk;Byun Sung Joon;Yoon Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.707-715
    • /
    • 2005
  • In this work, Scalar Passive code in Lattice Boltzmann Method is employed to simulate two-phase flow of low Reynolds number in a micro-channel. The mixing characteristics in a micro-channel is a function of Peclet number. The mixing length increases with the Peclet number. It is found that with the inclusion of static elements at the channel, rapid mixing of two liquids can be achieved, as shown by the results of computer simulations. The enhancement in mixing performance is thought to be caused by the generation of eddies and by lateral velocity component when the mixture flows past static elements. The results indicate that the size of static element has more effect on the mixing than the number of static element.

Dynamic Range Improvement of Digital Receiver (디지털 수신기의 Dynamic Range 개선방안)

  • Hwang, Hee-Geun;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2012
  • In this paper, In this paper, we consider a dynamic range in the frequency converter to obtain a high conversion gain and linearity while operating area proposed to broaden the design. Super-heterodyne RF Front-End style was applied to the active mixer stage, GaAs devices were used. Circuit design easy and simple forms benefit circuit is constructed in the drain mixer, passive mixer with the operating area were compared and analyzed. The simulation results of the conversion gain of 2.4dB and 0.2dBm about a gain-compression point, and showed the dynamic range of 71.9dB, when compared with passive mixers, dynamic range of approximately 6dB improvement was identified. Measurements of an approximately 2dB conversion gain and-1.0dBm of the gain-compression point, and confirmed that the active area of 71.1dB. When compared with passive mixers, dynamic range of is reduced by approximately 8dB has been improved.

2.45GHz CMOS Up-conversion Mixer & LO Buffer Design

  • Park, Jin-Young;Lee, Sang-Gug;Hyun, Seok-Bong;Park, Kyung-Hwan;Park, Seong-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 2002
  • A 2.45GHz double-balanced modified Gilbert-type CMOS up-conversion mixer design is introduced, where the PMOS current-reuse bleeding technique is demonstrated to be efficient in improving conversion gain, linearity, and noise performance. An LO buffer is included in the mixer design to perform single-ended to differential conversion of the LO signal on chip. Simulation results of the design based on careful modeling of all active and passive components are examined to explain in detail about the characteristic improvement and degradation provided by the proposed design. Two kinds of chips were fabricated using a standard $0.35\mu\textrm$ CMOS process, one of which is the mixer chip without the LO buffer and the other is the one with it. The measured characteristics of the fabricated chips are quite excellent in terms of conversion gain, linearity, and noise, and they are in close match to the simulation results, which demonstrates the adequacy of the modeling approach based on the macro models for all the active and passive devices used in the design. Above all the benefits provided by the current-reuse bleeding technique, the improvement in noise performance seems most valuable.

Analysis of Mining Performance and Flow Measurement Inside a Micro Mixer (마이크로 혼합기 내의 유동 계측 및 혼합 특성 해석)

  • Sung Jaey-ong;Lee In-won;Kim Byoung-Gyun;Yoon Eui-sik;Lee In-Seop
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.45-48
    • /
    • 2002
  • To investigate the flow related to the mixing, micro PIV measurements were performed in the middle plane of the channel. A passive micro mixer analyzed in this work has been designed in the shape of a three-dimensional microchannel and fabricated with PDMS molding process by KAIST. The mixing performance was evaluated for different flow rates using phenolphthalein and sodium hydroxide solutions. Results show that mixing is enhanced by the increase of flow rate, which yields stronger secondary flows with helical streamlines.

  • PDF

A Study on the Novel Micro Mixer for the Application of LOC (LOC적용을 위한 새로운 마이크로믹서의 연구)

  • Choi, Bum-Kyoo;Lee, Seung-Hyeon;Kang, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.143-149
    • /
    • 2008
  • This paper presents the results of the study on the novel micro mixer. Existing micro mixer is classified as active mixing and passive mixing by the mixing principles. Both mixing principles have problems. For solving these problems, this research has developed the novel micro mixers based on a totally different principle compared with former mixers. They not only have a simpler structure than former ones but also are able to achieve high mixing efficiency in spite of low power consumption due to using Lorentz Force. In addition, they are designed to increase the efficiency of mixing by changing the rotating direction of fluid with a polar switching circuit. Driving forces of the mixer are Lorentz force and a moving force of fluid due to electrophoresis. Because the efficiency of mixer is affected by electrode shape, several models have been made. The computer simulation has been made to estimate the efficiency of each mixer.

Single-bias GaAs MMIC single-ended mixer for cellular phone application (Cellular phone용 단일 전원 MMIC single-ended 주파수 혼합기 개발)

  • 강현일;이상은;오재응;오승건;곽명현;마동성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.14-23
    • /
    • 1997
  • An MMIC downconverting mixer for cellular phone application has been successfully developed using an MMIC process including $1 \mu\textrm{m}$ ion implanted gaAs MESFET and passive lumped elements consisting of spiral inductor, $Si_3N_4$ MIM capacitor and NiCr resistor. The configuration of the mixer presented in this paper is single-ended dual-gate FET mixer with common-source self-bias circuits for single power supply operation. The dimension of the fabricated circuit is $1.4 mm \times 1.03 mm $ including all input matching circuits and a mixing circuit. The conversion gian and noise figure of the mixer at LO powr of 0 dBm are 5.5dB and 19dB, respectively. The two-tone IM3 characteristics are also measured, showing -60dBc at RF power of -30dBm. Allisolations between each port show better than 20dB.

  • PDF

Fabrication of Ceramic-based Passive Mixers for Microfluidic Application by Thick Film Lithography (후막리소그라피를 이용한 세라믹기반의 미세유체소자용 수동형 혼합기의 제조)

  • Choi, Jae-Kyung;Yoon, Young-Joon;Lim, Jong-Woo;Kim, Hyo-Tae;Koo, Eun-Hae;Choi, Youn-Suk;Lee, Jong-Heun;Kim, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.739-743
    • /
    • 2008
  • Microfluidic device can be applied in a wide range of chemical and biological technology. In this paper, ceramic-based T-type passive mixers for microfluidic applications were fabricated by LTCC process combined with thick film photolithography. The base ceramic material in thick film was amorphous cordierite $((Mg,Ca)_2Al_4Si_5O_{18})$ and photoimageable polymers were added to give a photosensitivity. Two types of passive mixer, which showed the channel width of 1.0 mm and $200{\mu}m$, respectively, were designed considering mixing efficiency in the channel and their microfluidic properties were discussed in detail.

A 900 MHz Zero-IF RF Transceiver for IEEE 802.15.4g SUN OFDM Systems

  • Kim, Changwan;Lee, Seungsik;Choi, Sangsung
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.352-360
    • /
    • 2014
  • This paper presents a 900 MHz zero-IF RF transceiver for IEEE 802.15.4g Smart Utility Networks OFDM systems. The proposed RF transceiver comprises an RF front end, a Tx baseband analog circuit, an Rx baseband analog circuit, and a ${\Delta}{\Sigma}$ fractional-N frequency synthesizer. In the RF front end, re-use of a matching network reduces the chip size of the RF transceiver. Since a T/Rx switch is implemented only at the input of the low noise amplifier, the driver amplifier can deliver its output power to an antenna without any signal loss; thus, leading to a low dc power consumption. The proposed current-driven passive mixer in Rx and voltage-mode passive mixer in Tx can mitigate the IQ crosstalk problem, while maintaining 50% duty-cycle in local oscillator clocks. The overall Rx-baseband circuits can provide a voltage gain of 70 dB with a 1 dB gain control step. The proposed RF transceiver is implemented in a $0.18{\mu}$ CMOS technology and consumes 37 mA in Tx mode and 38 mA in Rx mode from a 1.8 V supply voltage. The fabricated chip shows a Tx average power of -2 dBm, a sensitivity level of -103 dBm at 100 Kbps with PER < 1%, an Rx input $P_{1dB}$ of -11 dBm, and an Rx input IP3 of -2.3 dBm.