• 제목/요약/키워드: passive flow control

검색결과 127건 처리시간 0.026초

연속 가변형 충격흡수기의 감쇠성능 해석 (Damping performance Analysis for an Electronically Contralled Shock Absorber)

  • 박재우;이동락;백운경
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF

곡관으로부터 방출되는 펄스파에 관한 실험적 연구 (An Experimental Study of the Impulsive Wave Discharged from a Curved Duct)

  • 이동훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.317-322
    • /
    • 2001
  • This study depicts an experimental work of the impulsive wave discharged from the open end of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.03 to 1.20 is employed to obtain the impulsive wave propagating outside the open end of the bend pipes. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can playa role of passive control against the impulsive wave.

  • PDF

모서리에 펜스를 가진 정방형주의 유체력저감 특성 (Fluid Force Reduction Characteristics of a Square Prism Having Fences on the Corner)

  • 노기덕;김광석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.389-395
    • /
    • 2006
  • The fluid force reduction of a square prism having fences on the corner was studied by the measuring the drag and lift acting on the prism and by the visualization experiment of the flow around the prism. The height of the fence was 10% of the square width and the range of Reynolds number considered was from $Re=0.9{\times}104$ to $Re=2.1{\times}104$. The drag of the prism was reduced about 6.8% and the amplitude of the lift was reduced by attaching two normal fences on the rear corners of the prism. In this case, the separated flow at the front corners was reattached on the upper and lower sides of the prism and the vortex streets at the wake region were appeared more slowly than that of the prototype prism.

와류 생성기를 이용한 수직벽 후류 제어의 실험적 연구 (Experimental Study of Manipulating the Vertical Fence Wake using the Vortex Generator)

  • 이상혁;강인수;차재은;김형범
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.12-16
    • /
    • 2010
  • The effect of vortex generators to manipulate the separated flow region behind the vertical fence was experimentally investigated. The experiments were performed in the circulating water channel. The parameters used in this study were the distance between the fence and vortex generators and size of vortex generators. Digital PIV method was applied to measure the instantaneous velocity fields around the fence. And the obtained flow properties were compared with those of fence How without the vortex generators. The obtained results quantitatively shows the specific size and distance of vortex generators which were effective to reduce the mean reattachment length of separation bubble behind the fence.

천음속 전투기 무장창 압력 진동의 수동 제어에 관한 수치해석 연구 (Numerical Analysis on Passive Control of Pressure Oscillation inside Transonic Fighter Weapons Bay)

  • 윤원혁;서강;김종암
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.387-392
    • /
    • 2013
  • 본 연구에서는 천음속 전투기 무장창 내부의 압력 진동을 제어하기 위해 F-111의 무장창을 2차원 공동(Cavity)으로 모델링하고, EDISON_전산열유체 시스템을 활용하여 공동의 형상 변화에 따라 발생하는 유동 특성을 분석하였다. 최근의 전투기들은 항력 감소와 스텔스 기능을 위해 무기를 기체 안에 내장하는데, 덮개를 열 때 발생하는 공동 형상에 의해 강한 압력 진동이 유발된다. 이러한 진동은 무장창과 주변 기계 장치에 구조적 진동을 일으키고 고장 또는 파괴를 유발하므로, 근본적인 해결책이 필요한 중요한 문제이다. 본 연구에서는 진동의 원인이 되는 전단층(Shear layer) 불안정성을 해결하기 위해 기존에 연구된 형상(Leading edge extension 및 Ramp)과 본 연구에서 새로 제안한 Ramp extension을 적용해 보았다. 그 결과 압력 진동의 원인이 되는 유동 특성이 줄어들고 압력 진동 역시 감소했음을 관찰할 수 있었다.

  • PDF

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF

능동형 체크 밸브를 이용한 고출력 압전 마이크로펌프 (High-output Piezoelectric Micropump Using Active Check Valves)

  • 박중호;요시다 카즈히로;요코타 신이치;함영복;윤소남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1864-1869
    • /
    • 2003
  • A novel piezoelectric micropump using active check valves in place of conventional passive check valves in inlet and outlet has been proposed and investigated. It actively controls open/close motion of check valves using piezoelectric actuator for expansion/contraction of pump chamber. In this paper, bi-directional flow characteristics and load characteristics are experimentally investigated using an adequate timing control for valve closing motion with a prototype micropump fabricated with the effective size of $17{\times}8{\times}11mm^{3}$. From the experimental results, it is ascertained that optimal values of phase shift against voltage to drive pump chamber for realization of a miniaturized but powerful micropump, are $15^{\circ}$ in inlet check valve and $195^{\circ}$ in outlet. Based on the obtained results, a sheet-type active shuttle valve that has a unified valve-body for inlet and outlet check valves is proposed. A micropump with the effective size of $10{\times}10{\times}10mm^{3}$ is fabricated and basic characteristics are experimentally investigated.

  • PDF

인버터 에어컨용 역률제어기능을 갖는 단상능동정류기 (Single Phase Active Rectifier with Power Factor Correction For Inverter Air-Conditioner)

  • 정용채;권경안
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.31-34
    • /
    • 1998
  • In this paper, a Single-phase Active Rectifier(SAR) with high power factor capability for inverter air-conditioner is adopted for satisfying the international standards of input current harmonics, IEC 1000-3-2. Comparing the conventional boost power factor correction circuit, one diode drop is reduced in the power flow path of the SAR circuit, so the system efficiency is improved. To apply the control IC, such as UC3854, ML4821 and so forth, to the SAR, the adequate sensing circuits are proposed. The design rules of passive components and two control loops are also presented. The prototype SAR circuit with 3㎾ power consumption is builted and tested to verify the operation of the proposed circuit.

  • PDF

친환경 소하천의 수리적 안정성 분석에 관한 연구 (A Study on Hydraulic Stable Analysis of The Natural Small River)

  • 김태경;이경훈;선병진;최천호
    • 환경영향평가
    • /
    • 제16권3호
    • /
    • pp.187-194
    • /
    • 2007
  • It started road constructions around river in 1990s. These maintenances concentrate on city river. Because river lives no living things and men don't come near there. But in spite of these river environment go to rack, river maintenances still keep on using preexistence method since 1990s. Only a part of city river environment maintenances consider environmental ability of passive river, river maintenance of a purpose of flood control still don't consider in the concrete. Because propulsion device that consider environment ability of passive river and possible application techniques don't complete. In accordance, A natural river maintenance needs absolutly a series of river projects. Because a natural river maintenance prevents a damage of environment ability. This study is to assume the flood really happened and to carry out the flood damage simulation needed in overflow simulation about the inundated zone. Also, This study examine unstable part about the hydraulic characteristic as velocities, stream power, shear, hydraulic depth, flow area in basin. And this study applied the HEC-RAS(river analysis system) model to predict flood overflow in youngsan river basin. Project flood is used the return period 100 year and inputed data that was calculated in intensity figures of illumination.

Analysis of Design Parameters For Shunt Valve and Anti-Siphon Device Used to Treat Patients with Hydrocephalus

  • Lee, Chong-Sun;Jang, Jong-Yun;Suh, Chang-Min
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.1061-1071
    • /
    • 2001
  • The present study investigated design parameters of shunt valves and anti-siphon device used to treat patients with hydrocephalus. The shunt valve controls drainage of cerebrospinal fluid (CSF) through passive deflection of a thin and small diaphragm. The anti-siphon device(ASD) is optionally connected to the valve to prevent overdrainage when the patients are in the standing position. The major design parameters influencing pressure-flow characteristics of the shunt valve were analyzed using ANSYS structural program. Experiments were performed on the commercially available valves and showed good agreements with the computer simulation. The results of the study indicated that predeflection of the shunt valve diaphragm is an important design parameter to determine the opening pressure of the valve. The predeflection was found to depend on the diaphragm tip height and could be adjusted by the diaphragm thickness and its elastic modulus. The major design parameters of the ASD were found to be the clearance (gap height) between the thin diaphragm and the flow orifice. Besides the gap height, the opening pressure of the ASD could be adjusted by the diaphragm thickness, its elastic modulus, area ratio of the diaphragm to the flow orifice. Based on the numerical simulation which considered the increased subcutaneous pressure introduced by the tissue capsule pressure on the implanted shunt valve system, optimum design parameters were proposed for the ASD.

  • PDF