천음속 전투기 무장창 압력 진동의 수동 제어에 관한 수치해석 연구 Numerical Analysis on Passive Control of Pressure Oscillation inside Transonic Fighter Weapons Bay

윤원혁^{1*}, 서 강¹, 김종암¹ 서울대학교 기계항공공학부¹

Abstract

본 연구에서는 천음속 전투기 무장창 내부의 압력 진동을 제어하기 위해 F-111의 무장창을 2차원 공 동(Cavity)으로 모델링하고, EDISON_전산열유체 시스템을 활용하여 공동의 형상 변화에 따라 발생하는 유동 특성을 분석하였다. 최근의 전투기들은 항력 감소와 스텔스 기능을 위해 무기를 기체 안에 내장하 는데, 덮개를 열 때 발생하는 공동 형상에 의해 강한 압력 진동이 유발된다. 이러한 진동은 무장창과 주 변 기계 장치에 구조적 진동을 일으키고 고장 또는 파괴를 유발하므로, 근본적인 해결책이 필요한 중요 한 문제이다. 본 연구에서는 진동의 원인이 되는 전단층(Shear layer) 불안정성을 해결하기 위해 기존 에 연구된 형상(Leading edge extension 및 Ramp)과 본 연구에서 새로 제안한 Ramp extension을 적 용해 보았다. 그 결과 압력 진동의 원인이 되는 유동 특성이 줄어들고 압력 진동 역시 감소했음을 관찰 할 수 있었다.

Key Words : 천음속 유동(Transonic Flow), 공동 유동(Cavity Flow), 압력 진동(Pressure Oscillation), 전단층(Shear Layer), 무장창(Weapons Bay)

1. Introduction

1950년대에 들어 비행기의 항력 감소를 목적으로 바퀴 수납고(Wheel well), 무장창(Weapons bay) 등 이 사용되며 공동(Cavity) 유동에 대한 연구가 시작되었다. 또, 전투기의 스텔스 기능과 기동성 향상, 무 장에 의한 발열⁽¹⁾ 감소를 위해 무장을 기체에 수납하는 것이 더욱 중요해졌다.

그런데 공동 내부의 피드백 루프(Feedback loop)에 의해 자가 유지 되는 압력 진동(self-sustained pressure oscillation)은 소음, 진동으로 인한 주변 장치의 고장과 파괴를 일으키고 무장에 피칭 모멘트 를 발생시킨다.⁽¹⁾ 따라서 압력 진동을 억제하는 많은 연구들이 선행되었다.⁽²⁻⁵⁾

압력 진동의 제어 방법은 크게 수동 제어와 능동 제어로 나눌 수 있다.⁽²⁾ 수동 제어는 추가적인 에너지 원 없이 공동 형상 변화를 이용해 유동을 제어하며, 능동 제어는 에너지를 이용해 유동을 제어하는 방 법이다. 수동 제어는 간단하며 큰 비용이 필요하지 않지만 능동 제어와 달리 설계 조건 이외의 유동에 서는 같은 효과를 기대하기 어렵다.

그러나 전투기가 고 기동 중일 때 보다 안정적인 유동 조건에서 무장창을 개방하고 무장을 투하하는 것이 정확하고 안전한 무장 사용에 유리하다. 따라서 본 연구에서는 그 조건을 순항 조건으로 가정하고 복잡한 설비와 에너지가 필요한 능동 제어 대신 수동 제어 방식을 선택하였다.

2. Cavity Flow

공동 앞에서 만들어진 경계층은 공동 앞전에서 전단층(Shear layer)으로 발달하여 자유류와 공동 내부 유동을 나누어지게 만든다. 이 때 나타나는 공동 유동은 그 특성에 따라 닫힌 공동 유동, 열린 공동 유 동, 천이 공동 유동으로 나뉜다. 이러한 유동 특성에는 길이와 깊이의 비인 *L/D*가 중요한 영향을 미치 는 것으로 밝혀졌는데⁽²⁾ 본 연구에서 사용한 F-111의 형상의 *L/D*는 6.79이므로⁽⁶⁾ 열린 공동 유동이 관찰된다.⁽¹⁾

항공기에서 많이 발견되는 열린 공동에서는 전단층에 의한 압력 진동이 발생한다. 공동 유동이 정상 유동이 되기 위해서는 공동 앞전에서 발생한 전단층이 뒷전에서 정체점을 가져야 한다. 따라서 전단층 은 어떤 각도로 뒷벽에 부딪히는데, 이 때 전단층이 곡률을 가지고 휘어지므로 공동 안팎의 압력차가 발생해 전단층이 진동하게 된다. 또한 전단층이 뒷벽에 부딪힐 때 발생하여 공동 내부에서 앞전으로 전 달되는 압축파는 전단층을 교란하는 피드백 루프를 만든다. 이러한 과정에서 공동 내부에는 강한 압력 진동이 발생하고 열린 공동 유동은 비정상 유동이 된다. 이와 같은 압력 진동의 주진동수는 다음과 같 은 Rossiter 식을 잘 따라 Rossiter 모드라 부르기도 한다.⁽²⁾

$$f_m = \frac{U_{\infty}}{L} \left[\frac{m - \alpha}{M_{\infty} + 1/\kappa_{\nu}} \right]$$

이 식은 Rossiter에 의해 얻어진 실험식이며 α 와 κ_{ν} 는 유동 조건과 L/D에 따라 달라지나 일반적으로 는 Heller와 Bliss가 제안한 0.25와 0.57을 사용한다.⁽⁷⁾ 또, Heller와 Bliss는 Rossiter의 식을 보완하 여 다음과 같은 식을 얻었다.⁽⁸⁾

$$f_m = \frac{U_\infty}{L} \left[\frac{m-\alpha}{M_\infty/\sqrt{1+(r/2)(\gamma-1)M_\infty^2)} + 1/\kappa_\nu} \right]$$

이 때 r은 recovery factor로 그 크기는 0.89이며 Heller와 Bliss에 의해 실험적으로 얻어졌다.

3. Validation

3.1 Computational Setup

EDISON_전산열유체 시스템의 2D_Comp-2.1_P 해석자가 공동 유동 해석에 사용될 수 있음을 검증하였다. 이 때 검증 케이스로 John Ross의 실험 결과⁽¹⁾를 이용하였는데 *L/D*는 5였으며 실험 조건은 Table 1에 정리되어 있다. Fig. 1은 검증에 사용된 격자이며 형상과 경계조건은 Punit Nayyar⁽¹⁾를 참고하였다. 격자는 총 4개의 블록으로 구성하였고 경계조건으로 유동의 입구와 출구에는 각각 subsonic inlet, outlet BC(Boundary condition), 벽면에는 viscous adiabatic wall BC, 입, 출구 근처 벽면에는 symmetric BC, 원방에는 far field BC를 주었다. 또, 벽 근처의 경계층을 정확히 모사하기 위해 첫 번 째 격자의 크기가 *y*+ 1이 되게 하는 격자 크기를 선정하였다.

유동 해석에 사용된 flux scheme은 RoeM을 사용하였고 dual time stepping 기법을 사용해 비정상 유동을 계산하였다. 또, 난류 모델은 k-w SST 모델을 사용하였다.

 Table 1. 검증 케이스 유동 조건(L/D = 5)

 Reynolds No.
 Mach No.

Reynolds No.	Mach No.
6783000	0.85
압력(Pa)	온도(K)
$1.00 imes 10^6$	310

Fig. 1. 검중 케이스 격자(L/D = 5)

3.2 Data Analysis

계산을 통해 얻어진 압력 데이터를 후처리하여 압력 진동의 주진동수와 SPL을 계산하였다. 압력 데이 터는 검증 케이스의 경우 공동 바닥의 $x/L = 0.05 \sim 0.85$ 인 9개 점, 유동 제어의 경우 x/L = 0.05~ 0.95인 10개 점에서의 값을 사용하였다. 또, 각 데이터의 무차원 시간 간격은 0.5이다.

주진동수를 얻기 위해 MATLAB의 이산 푸리에 변환을 이용하였으며, 각 진동수에서의 압력 진동 진 폭을 알 수 있도록 푸리에 변환 결과를 적절히 정규화하였다.

Overall Sound pressure level(OASPL, SPL)은 소음의 크기를 나타내는 척도로 유동장의 한 점에서 전반적인 소음 레벨을 나타낸다. 전체 진동수 영역의 소음 레벨을 나타내는 OASPL은 압력장의 제곱 평 균 제곱근(RMS)을 이용해 다음과 같이 정의한다. 이 때, $p_{ref} = 2 \times 10^{-5} (Pa)$ 이다.⁽¹⁾

$$OASPL(dB) = 20\log\left(\frac{p_{rms}}{p_{ref}}\right), \quad p_{rms} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(p_i - p_{mean})^2}, \quad p_{mean} = \frac{1}{N}\sum_{i=1}^{N}p_i$$

3.3 Result & Discussion

해석자의 검증을 위해 수치해석을 통해 얻은 압력 진동의 주진동수와 Rossiter 식을 비교하였다. Table. 2는 John Ross의 실험⁽¹⁾과 Rossiter 식, 본 연구에서 계산된 주진동수를 나타낸다.⁽⁹⁾ 본 연구 결과에서 두 번째와 세 번째 모드에 해당하는 피크가 뚜렷하게 관찰되지는 않았으나, 가장 지배적인 첫 번째 모드는 잘 예측되었고 실험/경험식과 10% 정도의 오차를 보였다. 또한, 무차원 시간 *t**가 46 ~ 49일 때(0.0331(s) ~ 0.0352(s))의 마하수 분포인 Fig. 2 ~ Fig. 5에서 압력 진동의 원인인 전단층의 진동이 잘 포착됨을 알 수 있다. 따라서 2D_Comp-2.1_P 해석자와 검증 케이스로 사용한 격자가 공동 유동의 주요 물리 현상을 잘 모사한다고 할 수 있다.

Table 2. Rossiter 모드 진동수

	Mode 1	Mode 2	Mode 3
Experiment	170 Hz	380 Hz	595 Hz
Rossiter (Hz)	173 Hz	405 Hz	636 Hz
Present (Hz)	191 Hz	Х	Х

4. Flow Control

4.1 Computational Setup

유동 제어를 위해 F-111 공동(L/D = 6.79)⁽⁶⁾의 앞전 형상을 변형시켰다. 먼저 선행 연구자들이 초음 속 공동 유동 제어에 사용한 Leading edge extension과 Ramp를 적용했다. Leading edge extension 은 앞전을 연장하여, 앞전에서 반사된 압축파가 전단층을 교란하지 못하도록 하는 방법이다. 강현구 등 ⁽³⁾은 이 방법을 이용해 압력진동을 효과적으로 억제하였다. Ramp는 앞전을 경사지게 만들어 뒷벽에 전 단층이 부딪히는 것을 개선하는 방법이다. X. Zhang 등⁽⁴⁾은 Ramp를 이용해 마하수 1.5에서는 압력 진 동을 줄이지 못 했으나 마하수 2.5에서는 유동을 효과적으로 제어하였다. 본 연구에서는 천음속 영역에 각각을 적용하고 두 방법을 결합한 Ramp extension을 사용해 보았다. 각 제어 방법에 대해 길이, 두께, 높이 등을 바꾸어 계산을 수행했고 기본적인 형상과 형상에 대한 정보는 Fig. 6과 Table 4~6에 있다. F-111은 고도 60600ft에서 마하수 0.712로 순항비행을 하며 이때 유동조건은 Table 3에 있다.

Table 3	3. 제어	케이스	유동	조건(L	D =	6.79)
---------	-------	-----	----	------	-----	-------

Reynolds No.	Mach No.			
6246000	0.712			
압력(Pa)	온도(K)			
$6.97 imes 10^3$	216.65			

Table	4. Leading	
Edge	Extension	

Eage	Extensi	on		I adle	e o. Rar	np	Table 6.	Ramp I	Extensio	on
	l/L	t/D			l/D	h/D		l/L	h/l	t/D
LE Ext 1	1/20	1/10		Ramp 1	1	1/10	Ramp Ext 1	1/10	1/20	1/10
LE Ext 2	1/10	1/10]	Ramp 2	1	1/5	Ramp Ext 2	1/10	1/10	1/10
BB BAU	1/10	1/10	J	Itamp B	1	1/0	Rump BAC B	1/10	1/10	1/10

4.2 Result & Discussion

		$\overline{OASPL}(dB)$				
Baseline	139.01					
Looding odgo ovtonoion	type 1	139.48				
Leading edge extension	type 2	139.09				
Domp	type 1	135.86				
Kamp	type 2	131.34				
Bown outonsion	type 1	135.85				
Kamp extension	type 2	130.43				

Table 7 제어 방식에 따른 OASPL

Fig. 8. Leading Edge Extension 2 마하수 분포

제 2회 첨단 사이언스·교육 허브 개발(EDISON) 경진대회

4.2.1 Leading Edge Extension

Table. 7에서 볼 수 있듯이 Leading edge extension을 사용한 경우에는 특별한 효과가 없었다. 즉, 강현구 등⁽³⁾이 수행한 초음속에서의 연구와 달리 천음속에서는 Leading edge extension이 압력 진동 저감에 효과가 없음을 알 수 있다. Leading edge extension은 전단층에 의해 발생한 압축파가 앞전에 반사된 후 전단층을 다시 교란하는 것을 막기 위한 장치이다. 그런데 초음속과 달리 천음속에서는 압축 파가 자유류 쪽으로 전파될 수 있으므로 앞전에 도달하기 전 그 세기가 많이 약해질 것이다. 따라서 전 단층을 교란하는 반사파가 약해지고 교란 정도 역시 약할 것이라 예상할 수 있다. 결론적으로 천음속 공동 유동에서는 반사파에 의한 교란 보다는 전단층 자체의 불안정성 즉, 전단층이 뒷벽에 충돌하며 만 들어진 곡률에 의한 압력 불평형이 비정상 유동 형성에 지배적이므로 압력 진동을 줄이기 위해 전단층 의 불안정성을 억제하는 방법이 훨씬 효과적일 것으로 판단된다.

4.2.2 Ramp

마하수 1 근처의 초음속에서는 효과가 없었던 Ramp의 경우, 두 가지 높이의 Ramp를 적용한 결과 최 대 8(dB)정도의 SPL 감소가 있었다. 이는 RMS 압력값이 2.5배 정도 감소했다는 뜻으로 압력 진동 저 감에 효과가 있음을 보여준다. Fig. 7과 9에서 Baseline과 Ramp의 마하수 분포를 보면 Ramp를 사용할 경우 전단층이 뒷전 위쪽으로 들어 올려져 뒷벽과의 충돌이 없어진 것을 볼 수 있다. 이와 같이 전단층 을 들어 올려 뒷벽과의 충돌을 억제할 경우 전단층의 불안정성을 줄여 소음 레벨을 감소시킬 수 있다.

4.2.3 Ramp Extension

 Ramp extension을 적용한 경우 평균적인 OASPL
 Pressure

 의 측면에서 Ramp보다 조금 더 나은 결과를 얻을
 4400

 수 있었다. Fig. 11은 Ramp와 Ramp extension을
 4400

 적용한 공동 바닥 각 점에서의 압력을 도시한 그래
 4500

 프로 Ramp extension의 경우 Ramp보다 바닥에서
 4750

 의 압력이 높음을 알 수 있다. 또한, Ramp
 4750

 온 지역이 높음을 알 수 있다. 또한, Ramp
 4750

 Ramp를 적용한 공동 내부의 압력보다 높음을 유동
 4750

 장의 압력 분포 그림에서도 확인 할 수 있었다. 이
 4500

 리한 압력의 차이는 Leading edge extension의
 4500

 효과로 보여 지는데 이로 인해 Ramp보다 Ramp
 4500

 오 압력 진동 저감이 조금 더 효과적이었다고 판단
 4500

 된다.
 4500

5. Conclusion

EDISON_전산열유체 시스템을 활용하여 천음속 공동 유동 해석을 수행하였으며, F-111의 무장창 형 상에 대해 다양한 유동 제어 방법을 적용하여 각 방법의 효과를 관찰 하였다. 초음속 영역과 달리 Leading edge extension은 천음속 영역에서 압력 진동 억제에 효과가 없었지만, Ramp와 Ramp extension은 효과를 가졌다. 특히, 본 연구에서 제안한 Ramp extension은 Ramp보다 조금 더 나은 결 과를 보였다. 이로부터 천음속 영역에서는 뒷전에서 전달되는 압축파와 앞전에서 반사된 반사파 보다는 전단층이 뒷벽에 충돌하며 만들어내는 압력 불평형이 압력 진동 발생에 크게 기여함을 알 수 있다.

후기

본 연구는 EDISON 중앙센터와 전산열유체 전문센터의 지원을 받아 수행되었습니다.

참고문헌

- Punit Nayyar, 2005, "CFD Analysis of Transonic Turbulent Cavity Flows", Thesis, University of Glasgow.
- (2) S. J. Lawson, G. N. Barakos, 2011, "Review of Numerical Simulations fo High-speed, Turbulent Cavity Flows", *Progress in Aerospace Sciences*, Vol. 47, pp. 186~216.
- (3) 강현구, 김재형, Toshiaki Setoguchi, Shigeru Matsuo, 김희동, 2007, "Passive Control of the Pressure Oscillations in Supersonic Cavity Flows", 대한기계학회 2007도 추계학술대회 강연 및 논문 초록집, pp. 120~125.
- (4) X. Zhang, X. X. Chen, A. Rona, 1999, "Attenuation of Cavity Flow Oscillation through Leading Edge Flow Control", *Journal of Sound and Vibration*, Vol. 221, No. 1, pp. 23~47.
- (5) Youngki Lee, Minsung Kang, Heuydong Kim, 2008, "Passive Control Techniques to Alleviate Supersonic Cavity Flow Oscillation", *Journal of Propulsion and Power*, Vol. 24, No. 4, pp. 697~703.
- (6) Leonard Shaw, Rodney Clark, Dick Talmadge, 1988, "F-111 Generic Weapons Bay Acoustic Environment", Journal of Aircraft, Vol. 25, No. 2, pp. 147~153.
- (7) E. Lillberg, C. Fureby, 2000, "Large Eddy Simulations of Supersonic Cavity Flow", AIAA 2000-2411.
- (8) O. H. Unalmis, N. T. Clemens, D.S. Dolling, 2004, "Cavity Oscillation Mechanisms in High-Speed Flows", AIAA Journal, Vol. 42, No. 10, pp. 2035~2041.
- (9) David Lawrie, 2004, "Investigation of Cavity Flows at Low and High Reynolds Number Using Computational Fluid Dynamics", Thesis, University of Glasgow.