• 제목/요약/키워드: particle size effect

검색결과 1,969건 처리시간 0.028초

고농도 분말활성탄 결합 MBR 운전에 대한 활성탄 교체주기의 영향 (Effect of powder activated carbon replacement on HCPAC-MBR system operation)

  • 이채하;김진태;이정현;서규태;김인수
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.141-148
    • /
    • 2008
  • This study was conducted to evaluate the effect of PAC(Powder Activated Carbon) retention time on stable operation of high concentration powered activated carbon(HCPAC-MBR) in the treatment of secondary domestic wastewater. The pilot scale HCPAC-MBR system was operated at two different SRTs, 25 days and 100 days. The main drawback of HCPAC-MBR system was the rapid increase of trans-membrane pressure. The increase rate of trans-membrane pressure was proportional to SRT value at constant flux. This result seemed to be caused by reduced amount of EPS adsorbed on the PAC in the reactor by decreasing the SRT of the PAC. The particle size of the PAC was also influenced by SRT. The PAC size was decreased as SRT was increased. The change of particle size could be one reason for the change of trans-membrane pressure. The pore volume in the cake-layer formed on the membrane surface became to be increased by reducing SRT, because the cake-layer was highly composed of the PAC. Therefore, increased pore volume might play a role to reduce the trans-membrane pressure. The removal rate of E260 and TOC was also inversely proportional to SRT value.

Al-Si 합금에 Ni, Ce 첨가 효과와 압출온도의 영향 (The Effect of Ni, Ce Addition and Extrusion Temperature on Al-Si Alloy)

  • 이태행;홍순직
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.34-42
    • /
    • 2004
  • The effect of extrusion temperature on the microstructure and mechanical properties were studied in He-gas atomized $Al_{81-(x+y)}Si_{19}Ni_xCe_y$ alloy powders and their extruded bars using SEM, tensile testing and thermal expansion testing. The extruded bar of $Al_{73}Si_{19}Ni_7Ce_1$ alloy consists of a mixed structure in which fine Si particles with a particle size below 20∼500nm and very fine $Al_3Ni,\;Al_3Ce$ compounds with a particle size below 200nm are homogeneously dispersed in Al martix with a grain size below 500nm. With increasing extrusion temperature, the microstructural scale was decreased. The ultimate tensile strength of the alloy bars has incresed with decreasing extrusion temperature from 500 to 35$0^{\circ}C$ and $Al_{73}Si_{19}Ni_7Ce_1$ alloy extreded at 35$0^{\circ}C$ shows a highest tensile strength of 810 MPa due to the fine namostructure. The addition of Ni and Ce decreased the coefficients of thermal expansion and the effects of extression temperature on the thermal expansion were not significant.

석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구 (An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet)

  • 채재우;조용철;전영남;한영수
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2159-2168
    • /
    • 1992
  • 본 연구에서는 CWS 액적의 가열 및 연소에 관한 현상규명에 있어서 액적크기, CWS 석탄함량 및 연소분위기 가스온도, CWS 액적중의 미분된 석탄입자의 크기와 특히 분위기중의 산소농도의 변화에 의한 영향을 파악하고자 한다.

부양가스증발응축법에 의해 제조된 구리산화물 나노분말의 촉매 특성 연구 (Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method)

  • 엄영량;김흥회;오정석;이창규
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.64-69
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly $Cu_2O$, but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.

Effect of Process-Control Agents on Characteristics of Amorphous Al-Y-Ni-Co Alloy Powder Produced by Mechanical Alloying

  • Nguyen, H.V.;Kim, J.C.;Kim, J.S.;Kwon, Y.J.;Kwon, Y.S.
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2010
  • In this work, effect of various process-control agents (PCAs) on the mechanical alloying of amorphous alloy of $Al_{85}Y_8Ni_5Co_2$ has been investigated. The dependence of the particle shape, size and crystallization behavior of the amorphous alloy powders on the type of PCAs and their concentrations was investigated by using X-ray diffraction, field-emission scanning electron microscopy and differential scanning calorimetry. It was found that the additive of toluene could affect positively the amorphization and thermally induced crystallization processes, as well as the size refinement, morphology and particle-size distribution of as-milled powders in comparison with alloy obtained without PCA.

혼합응집제에 의한 자연유기물질 제거에 미치는 영향 인자 (Influencing Factors on NOM Removal using Blended Coagulants)

  • 명복태;우달식;최종헌;문철훈;이윤진;조영태;조관형;남상호
    • 환경위생공학
    • /
    • 제16권3호
    • /
    • pp.96-103
    • /
    • 2001
  • This study was carried out to investigate the major factors for the removal of NOMs (Natural Organic Matters) by alum ferric chloride and blended coagulants that consisted of alum and ferric chloride. Investigated factors were pH, the dosage of coagulant, alkalinity, hardness and bloc strength. The particle size contained in the test water came from the Han River was also measured. DOC(Dissolved Organic Carbon) removal at pH 6 was two to three times higher than at pH 8.5. The blended coagulant showed 9 to 10 percent higher DOC removal efficiency and 2 to 4 percent higher turbidity under the same condition. Alkalinity consumption of alum, ferric chloride and blended coagulant was 81%, 90% and 86% of theoretical value, respectively. The limit concentration of alkalinity to avoid pin floe was 10 mg $CaCO_3/L$ when alum was used. Hardness had no apparent effect on coagulation. The residual turbidity and $UV_{254}$ showed a tendency of increasing with floc strength($sec^{-1}$) increase. The order of floe strength was the following; alum >blended coagulant > ferric chloride. The particle counter test showed 89 percent of the small particle size(SPS, $1~5{\;}{\mu}textrm{m}$) and 11 percent of the medium to large particle size(M.LPS, $5~125{\;}{\mu}textrm{m}$). At PH7.85, the particle removal efficiencies of SPS($1~5{\;}{\mu}textrm{m}$) and M.LPS($5~125{\;}{\mu}textrm{m}$) in the coagulation process were 81% and 95%, respectively.

  • PDF

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead;Kim, Jinhong;Song, Heewon;Lee, Seon Hwa;Sung, Jong Hun;Kim, Jisu;Yoo, Hyun Deog
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.352-360
    • /
    • 2020
  • Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Effects of Neutral Detergent Fiber Concentration and Particle Size of the Diet on Chewing Activities of Dairy Cows

  • Moon, Y.H.;Lee, S.C.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1535-1540
    • /
    • 2004
  • Six dry Holstein cows were used to evaluate the effect of dietary neutral detergent fiber (NDF) concentration and particle size (PS) on chewing activity. Treatments were arranged in a 3$\times$3 factorial design; total mixed rations contained three NDF concentrations (26, 32, 38%) and three PS (1.0, 1.5, 2.0 cm). NDF levels and particle sizes of diets were adjusted by formulating rate and cutting length of alfalfa hay and rice straw. Cows were fed twice daily at 90% of ad libitum feed intake throughout the experiment. Chewing activity was positively associated with NDF concentration, but not significantly affected by PS of diet. Eating time per unit of NDF intake was affected by PS rather than NDF concentration of diet. Time spent ruminating per unit DM or NDF intake increased with increasing NDF concentration of diet, but was not affected by PS. As the PS of diet increased, the eating time per day increased, but the rumination time decreased. In addition, as the number of rumination bolues decreased the rumination duration increased as well as the chews per bolus. The regression equation induced from relationships of NDF concentrations (NDF, %) and particle sizes (PS, cm) of diet on roughage value index (RVI, min of chewing time/kg DMI) was as follows. RVI=-19.672+1.44$\times$NDF+5.196$\times$PS, ($R^{2}$=0.81).

텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구 (The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA)

  • 이승우;송흥섭;문갑태
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성 (Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania)

  • 조해란;최병현;안용태;백성현;노광철;박선민
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.