DOI QR코드

DOI QR Code

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method

부양가스증발응축법에 의해 제조된 구리산화물 나노분말의 촉매 특성 연구

  • Uhm, Y.-R. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, W.-W. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI)) ;
  • Oh, J.-S. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, C.-K. (Department of Nuclear Materials Technology Development,Korea Atomic Energy Research Institute (KAERI))
  • 엄영량 (한국원자력 연구소, 원자력재료기술개발부) ;
  • 김흥회 (한국원자력 연구소, 원자력재료기술개발부) ;
  • 오정석 (한국원자력 연구소, 원자력재료기술개발부) ;
  • 이창규 (한국원자력 연구소, 원자력재료기술개발부)
  • Published : 2005.02.01

Abstract

The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly $Cu_2O$, but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.

Keywords

References

  1. K. E. Gonsalves, S. P. Rangarajan and J. Wang : Handbook of Nanostructured Materials and Nanotechnology (Edited by H.S.Nalwa), Academic Press, 1 (2000) 1-21
  2. R. W. Siegel : MRS Bull., 15 (1990) 60
  3. S. Vemury, S. E. Pratsinis and L. Kibbery : J. Mater. Res., 12 (1997) 1031 https://doi.org/10.1557/JMR.1997.0144
  4. T. Fukui, T. Oobuchi, Y. Ikuhara, S. Ohara and K. Kodera : J. Am. Ceram. Soc., 80 (1997) 261 https://doi.org/10.1111/j.1151-2916.1997.tb02822.x
  5. Y. R. Uhm, W. W. Kim, and C. K. Rhee : Phys. Stat. Sol. A, 201 (2004) 1934 https://doi.org/10.1002/pssa.200304560
  6. Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang and Y. Qian : Sol. Stat. Comm., 130 (2004) 585 https://doi.org/10.1016/j.ssc.2004.03.028
  7. T. W. Ebbesen and P. M. Ajayan : Nature, 358 (1992) 220 https://doi.org/10.1038/358220a0
  8. V. G. Harchuk, I. P. Kolenko, L. A. Petrov and L. M. Guskova : Journal of organic chemistry, 22 (11) (1986) 2306
  9. J. Barrault, M. Abdellaoui and C. Bouchoule : Appl. Cat. B, 27 (2000) 225 https://doi.org/10.1016/S0926-3373(00)00170-3
  10. J. F. Pierson, A. Thobor-Keck and A. Billard : Appl. Surf. Sci., 210 (2003) 359 https://doi.org/10.1016/S0169-4332(03)00108-9
  11. Y. R. Uhm, W. W. Kim, S. J. Kim, C. S. Kim and C. K. Rhee : J. Appl. Phys., 93(10) (2003) 7196 https://doi.org/10.1063/1.1558234
  12. S. Bordiga, C. Paze, G. Berlier, D. Scarano, G. Spoto, A. Zecchina and C. Lamberti : Catal. Today, 70 (2001) 91 https://doi.org/10.1016/S0920-5861(01)00410-2
  13. T. Tanija, R. Chandra, R. Banerjee and P. Ayyub : Scripta Mater., 44 (2001) 1915 https://doi.org/10.1016/S1359-6462(01)00808-9
  14. A. Ye. Yermakov, T. A. Feduschak, M. A. Uimin, A. A. Mysik, V. S. Gaviko, O. N. Chupakin, A. B. Shishmakov, V. G. Kharchuk, L. A. Petrov, Y. A. kotov, A. V. Vosmerikov and A. V. Korolyov : Solid Stat. Ionics, 172 (2004) 317 https://doi.org/10.1016/j.ssi.2004.05.014
  15. J. P. Busalmen, M. Vazquez, and S. R. Sanchez : Electrochimica Acta, 47 (2002) 1857 https://doi.org/10.1016/S0013-4686(01)00899-4