• Title/Summary/Keyword: particle size effect

Search Result 1,972, Processing Time 0.027 seconds

Cytotoxic Effect of Urushiol-ethanol Micro-particles on Human Cervical Carcinoma Cells (우루시올-에탄올 수분산 미립자의 자궁경부암세포에 대한 독성효과)

  • Kim, Jin-Woo;Ryu, Kyu-Eun;Jang, Hong-Seok;Ahn, Woong-Shick;Choi, Jong-Oh;Chun, Heung-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.1
    • /
    • pp.23-27
    • /
    • 2004
  • The urushiol-ethanol corpuscle of 320 nM in average particle size was prepared and concentrated by ultra homogenization and centrifugation. The cytotoxic profiles of this particle for use as anti-tumor agent have been evaluated in vitro in cultures of human fibroblasts (MRC-9) and celvical carcinoma cells (CUMC-3). The cytotoxicty assays revealed that the inhibitor effect of $10^{-5}$ M urushiol-ethanol particle on the growth of MRC-9 was hardly detected, while CUMC-3 cells exhibited over 50% of growth inhibition under the same conditions. In addition, a clear multiple-unit ladder pater of apoptotic DNA was observed for the urushiol treated CUMC-3 cells. Thus, the results indicated that urushiol inhibited growth of celvical carcinoma cells by inducing apoptosis, which is a mechanism observed with other typical antitumor agents.

Polymerization of Methyl Methacrylate in Carbon Dioxide Using Glycidyl Methacrylate Linked Reactive Stabilizer: Effect of Pressure, Reaction Time, and Mixing

  • Han, Sang-Hun;Park, Kyung-Kyu;Lee, Sang-Ho
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Using glycidyl methacrylate-linked poly(dimethylsiloxane), methyl methacrylate was polymerized in supercritical $CO_2$. The effects of $CO_2$ pressure, reaction time, and mixing on the yield, molecular weight, and molecular weight distribution (MWD) of the poly(methyl methacrylate) (PMMA) products were investigated. The shape, number average particle diameter, and particle size distribution (PSD) of the PMMA were characterized. Between 69 and 483 bar, the yield and molar mass of the PMMA products showed a trend of increasing with increasing $CO_2$ pressure. However, the yield leveled off at around 345 bar and the particle diameter of the PMMA increased until the pressure reached 345 bar and decreased thereafter. With increasing pressure, MWD became more uniform while PSD was unaffected. As the reaction time was extended at 207 bar, the particle diameter of PMMA decreased at $0.48{\pm}0.03%$ AIBN, but increased at 0.25% AIBN. Mixing the reactant mixture increased the PMMA yield by 18.6% and 9.3% at 138 and 207 bar, respectively.

Effect of Particle Shape for Powder Flow on Hopper Surface (호퍼 표면에서의 분말 유동에 대한 입자 형상의 영향)

  • Kang, Min-Chang;Bang, Sang-Wook;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.28-34
    • /
    • 2022
  • The flow at the top surface of the hopper is of particular industrial interest. Previously, the velocity distribution inside the hopper was predicted using the simple, void and spot models, which are equations for the particle flow field. However, because these equations cannot predict the velocity distribution at the top surface, a new equation has been recently proposed. This study employed the discrete element method with the changed shape of the particles. Based on the results, the shape of the particle had no effect on the discharge angle and shape of the velocity distribution; however, it greatly affected the size of the velocity distribution and bed thickness of the flowing particles. Therefore, in the future, it is necessary to modify the theoretical equation by considering the shape of the particles.

Preparation and Evaluation of Aclarubicin Liposome using Microfluidizer (마이크로플루다이저를 이용한 아클라루비신 리포좀의 제조 및 평가)

  • Park, Mork-Soon;Park, Jin-Kyu;Lee, Gye-Won;Baek, Myoung-Ki;Jee, Ung-Kil
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • In order to attain a sustained release at targeted organs in a prolonged time which can reduce the side effects and maximize the therapeutic effect, aclarubicin (ACL) was entrap ped into liposomes of different lipid compositions using Microfluidizer, and dry liposomes were prepared by lyophilization. The dry aclarubicin-entrapped liposomes were evaluated in terms of mean particle size and size distribution, entrapment efficiency and in vitro drug release profile. The Entrapment efficiency of liposome, when the concentration of aclarubicin and lipid were 0.5 to 1.0mg/ml and $200{\mu}mol$/ml, respectively, was over 80% using Microfluidizer, in contrast to 70% of entrapment efficiency using hand-shaking method. Mean particle size and size distribution of aclarubicin-entrapped liposomes of various lipid compositions did not change considerably by the freeze drying. The range of particle size was between 80 and 200nm. Among aclarubicin-entrapped liposomes, ACL-liposome of PC/DPPC/CH0L/TA displayed the most significant sustained release. The addition of DPPC appeared to be favorable for the control of release. In general, aclarubicin entrapped in liposomes was less stable than free aclarubicin either in pH 7.4 phosphate buffer or in human plasma. Formulation I($t_{1/2}$, 20.3 hr) devoid of lipid additive was the most unstable in the phosphate-buffer solution while formulation II($t_{1/2}$, 40.7 hr) with cardiolipin was the most stable. Half lives of aclarubicin-entrapped liposomes in human plasma were 43.2, 50.7, 35.9 and 35.3 hr for formulation I. II, III and IV, respectively, in contrast to 57.8 hr for free aclarubicin.

  • PDF

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

Effect of $Al_2O_3$ Particle Size on Thermal Properties of Glass-Ceramics for LTCC Material (저온동시소성용 결정화 유리의 필러 사이즈가 열적 특성에 미치는 영향)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.281-281
    • /
    • 2007
  • Low Temperature Co-fired Ceramic (LTCC) technology has been used in electronic device for various functions. LTCC technology is to fire dielectric ceramic and a conductive electrode such as Ag or Cu thick film below the temperature of $900^{\circ}C$ simultaneously. The glass-ceramic has been widely used for LTCC materials due to its low sintering temperature, high mechanical properties and low dielectric constants. To obtain the high strength, addition of filler, the microstructure should have various crystals and low pores in a composite. In this study, two glass frits were mixed with different alumina size(0.5, 2, 3.7um) and sintered at the range of $850{\sim}950^{\circ}C$. The microstructure, crystal phases, thermal and mechanical properties of the composites were investigated using FE-SEM, XRD, TG-DTA, Dilatomer. When the particle size of $Al_2O_3$ filler increased, the starting temperatures for the densification of the sintered bodies, onset point of crystallization, peak crystallization temperature in the glass-ceramic composites decreased gradually. After sintered at $900^{\circ}C$, the glass frits were crystallized as $CaAl_2Si_2O_8\;and\;CaMgSi_2O_6$. The purpose of our study is to understand the relationship between the $Al_2O_3$ particle size and thermal properties in composites.

  • PDF

Scale effects on triaxial peak and residual strength of granite and preliminary PFC3D models

  • Xian, Estevez-Ventosa;Uxia, Castro-Filgueira;Manuel A., Gonzalez-Fernandez;Fernando, Garcia-Bastante;Diego, Mas-Ivars;Leandro R., Alejano
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.461-476
    • /
    • 2022
  • Research studies on the scale effect on triaxial strength of intact rocks are scarce, being more common those in uniaxial strength. In this paper, the authors present and briefly interpret the peak and residual strength trends on a series of triaxial tests on different size specimens (30 mm to 84 mm diameter) of an intact granitic rock at confinements ranging from 0 to 15 MPa. Peak strength tends to grow from smaller to standard-size samples (54 mm) and then diminishes for larger values at low confinement. However, a slight change in strength is observed at higher confinements. Residual strength is observed to be much less size-dependent. Additionally, this study introduces preliminary modelling approaches of these laboratory observations with the help of three-dimensional particle flow code (PFC3D) simulations based on bonded particle models (BPM). Based on previous studies, two modelling approaches have been followed. In the first one, the maximum and minimum particle diameter (Dmax and Dmin) are kept constant irrespective of the sample size, whereas in the second one, the resolution (number of particles within the sample or ϕv) was kept constant. Neither of these approaches properly represent the observations in actual laboratory tests, even if both of them show some interesting capabilities reported in this document. Eventually, some suggestions are provided to proceed towards improving modelling approaches to represent observed scale effects.

Reflectance Characteristics of Al-Si based Alloys according to Powder Size and Composition (Al-Si계 합금의 분말 크기 및 조성에 따른 반사율 변화 특성)

  • Choi, Gwang Mook;Chae, Hong Jun
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.22-27
    • /
    • 2019
  • In this study, the effects of powder size and composition on the reflectance of Al-Si based alloys are presented. First, the reflectance of Al-Si bulk and powder are analyzed to confirm the effect of powder size. Results show that the bulk has a higher reflectance than that of powder because the bulk has lower surface defects. In addition, the larger the particle size, the higher is the reflectance because the interparticle space decreases. Second, the effect of composition on the reflectance by the changing composition of Al-Si-Mg is confirmed. Consequently, the reflectance of the alloy decreases with the addition of Si and Mg because dendrite Si and $Mg_2Si$ are formed, and these have lower reflectance than pure Al. Finally, the reflectance of the alloy is due to the scattering of free electrons, which is closely related to electrical conductivity. Measurements of the electrical conductivity based on the composition of the Al-Si-Mg alloy confirm the same tendency as the reflectance.

Effect of Types of Colloidal Silica on Properties of Hydrophilic Coating Films (콜로이드 실리카 종류가 친수성 코팅 필름의 물성에 미치는 영향)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.830-836
    • /
    • 2017
  • Hydrophilic coating solutions were prepared by reacting a silane coupling agent, GPTMS (3-glycidoxypropyl trimethoxysilane) with colloidal silica. Hydrophilic coating films were also obtained by depositing the hydrophilic coating solutions on polycarbonate substrates by spin-coating and subsequently by thermal curing at $120^{\circ}C$. During this process, the effect of average particle sizes of colloidal silica was studied on the properties of coating films. As a result, coating film, prepared from colloidal silica with average particle size of 25 nm, showed a low contact angle of $20^{\circ}$ and a good pencil hardness of H. On the other hand, coating films, prepared from colloidal silica with average particle sizes of 15 nm and 45 nm, exhibited high contact angles of $27^{\circ}$ and $36^{\circ}$ and pencil hardness of H and B, respectively.

Studies on the Value of Briquet Ash as a Component of Rooting Media(Part II) - Influence of Briquet Ash on the Rooting of Stemcuttings in Chrysanthemum morifolium - (삽목용토(揷木用土)로서의 연탄재 이용(利用)에 관(關)한 연구(硏究)(제(第)2보(報)) - Chrysanthemum morifolium의 삽수(揷穗)의 발근(發根)에 미치는 삽목용토(揷木用土) 및 입자(粒子)크기의 영향(影響) -)

  • Suh, Young-Kyo;Ku, Ja-Hyoung
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 1976
  • The purpose of this study was to evaluate the value of briquet ash as a component of rooting media in Chrysanthemum morifolium. Various rooting media were made in mixture at different ratio and alone using sand, vermiculite and briquet ash as components of soil mixture. In order to investigate the effect of the particle size of briquet ash on rooting of stemouttings, various particle sizes were used as rooting media. Rooting ratio, number of root and root length were examined to evaluate the effect of the various rooting media and the particle sizes of briquet ash. The important conclusions of this study are summerized as follows; 1. Briquet ash was better rooting medium than sand, but it showed more effective result when it was used in mixture with other rooting media. 2. The particle size of briquet ash as a rooting medium to produce a healthy vegetatively propagated plant showed the best result at 2-3mm.

  • PDF