Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.1.22

Reflectance Characteristics of Al-Si based Alloys according to Powder Size and Composition  

Choi, Gwang Mook (Center for Advanced Materials and Processing, Institute for Advanced Engineering)
Chae, Hong Jun (Center for Advanced Materials and Processing, Institute for Advanced Engineering)
Publication Information
Journal of Powder Materials / v.26, no.1, 2019 , pp. 22-27 More about this Journal
Abstract
In this study, the effects of powder size and composition on the reflectance of Al-Si based alloys are presented. First, the reflectance of Al-Si bulk and powder are analyzed to confirm the effect of powder size. Results show that the bulk has a higher reflectance than that of powder because the bulk has lower surface defects. In addition, the larger the particle size, the higher is the reflectance because the interparticle space decreases. Second, the effect of composition on the reflectance by the changing composition of Al-Si-Mg is confirmed. Consequently, the reflectance of the alloy decreases with the addition of Si and Mg because dendrite Si and $Mg_2Si$ are formed, and these have lower reflectance than pure Al. Finally, the reflectance of the alloy is due to the scattering of free electrons, which is closely related to electrical conductivity. Measurements of the electrical conductivity based on the composition of the Al-Si-Mg alloy confirm the same tendency as the reflectance.
Keywords
Additive manufacturing; Reflectance; Al-Si alloys; powder size effect; Composition effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. J. Lewandowski and M. Seifi: Annu. Rev. Mater. Res., 46 (2016) 151.   DOI
2 W. E. Frazier: J. Mater. Eng. Perform., 23 (2014) 1917.   DOI
3 F. R. Collins and J. H. Dudas: Weld. J., 45 (1966) 241.
4 N. Kaufmann, M. Imranb, T. M. Wischeropp, C. Emmelmann, S. Siddique and F. Walther: Phys. Procedia, 83 (2016) 918.   DOI
5 J. R. Davis: Alloying: Understanding the Basics, ASM International, Ohio, USA (1993) 351.
6 W. D. Callister, Jr.: Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sons, New York (2007) 5.
7 J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler and T. M. Pollock: Nature, 549 (2017) 365.   DOI
8 D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio, S. Biamino, D. Ugues, M. Pavese and P. Fino: Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs), INTECH, Inc., London (2014) 3.
9 M.N. Ervina Efzan, H. J. Kong and C. K. Kok: Adv. Mater. Res., 845 (2014) 355.   DOI
10 C. H. Caceres, C. J. Davidson, J. R. Griffiths and Q. G. Wang: Metall. Mater. Trans. A, 30 (1999) 2611.   DOI
11 H. R. Ammar, C. Moreau, A. M. Samuel, F. H. Samuel and H. W. Doty: Mater. Sci. Eng. A, 489 (2008) 426.   DOI
12 M. Shamsuzzoha, L. M. Hogan, D. J. Smith and P. A. Deymier: J. Cryst. Growth, 112 (1991) 635.   DOI
13 N.D. Mermin and N. W. Ashcroft: Solid state physics, Holt, Rinehart and Winston, New York (1976) 671.
14 M. G. Blaber, M. D. Arnold and M. J. Ford: J. Phys. Chem. C, 113 (2009) 3041.   DOI
15 M. H. Mulazimoglu, R. A. L. Drew and J. E. Gruzleski: Metall. Trans. A, 20 (1989) 383.   DOI