• Title/Summary/Keyword: particle phase

Search Result 1,783, Processing Time 0.031 seconds

A Study on the Longitudinal Vibration of Finite Elastic Medium using Laboratory Test (실내실험을 통한 유한탄성 매질의 종방향 진동에 대한 연구)

  • Park, Ki-Shik
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.58-62
    • /
    • 2002
  • Longitudinal wave tests with finite elastic medium were performed to investigate the difference between measured values and theoretical values of propagation velocity and elasticity modulus. Each accelerometer was attached on finite elastic medium with same phase and different positions to check the particle motion. The results show that measured values of elasticity moduli from both time domain and frequency domain were similiar to theoretical value. Polarity of signal depends entirely on the phase of accelerometer. It proved that the propagation velocity and the particle motion are in the same direction when a compressive stress is applied. And also the propagation velocity and the particle motion depend on the intensity of the stress and material properties respectively.

Effect of Brownian Motion in Heat Transfer of H2O-Cu Nanofluid using LBM

  • Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.981-990
    • /
    • 2010
  • The main objective of this study is to investigate the fluid flow and the heat transfer characteristics of nanofluids using multi-phase thermal LBM and to realize theenhancement of heat transfer characteristics considered in the Brownian motion. In multi-phase, fluid component($H_2O$) is driven by Boussinesq approximation, and nanoparticles component by the external force gravity and buoyancy. The effect of Brownian motion as a random movement is modified to the internal velocity of nanoparticles(Cu). Simultaneously, the particles of both the phases assume the local equilibrium temperature after each collision. It has been observed that when simulating $H_2O$-Cu nanoparticles, the heat transfer is the highest, at the particle volume fraction 0.5% of the particle diameter 10 nm. The average Nusselt number is increased approximately by 33% at the particle volume fraction 0.5% of the particle diameter 10 nm when compared with pure water.

HIGH-ENERGY SOLAR PARTICLE EVENTS IN THREE DIMENSIONS

  • Kocharov, Leon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.

  • PDF

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

Anisotropic Acorn-like Particle Fabrication Via a Dynamic Phase Separation Method (동적 상분리법을 이용한 이방성 도토리형상 입자 제조)

  • Park, Chul Ho;Baek, Il-hyun
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2019
  • Anisotropic particles have been issued in various fields due to their unique physical properties. Herein, a novel dynamic phase separation method (DPS) is introduced to fabricate anisotropic acorn-like nanoparticles. DPS consists of two dynamic conditions; solvent evaporation and nonsolvent induced precipitation. The bottom layer is controlled by feeding the water as a non-solvent diluent, and the phase separation of the upper layer relies on the diffusion and evaporation of a volatile good solvent. At this condition, the acorn-like particles were fabricated. Under a closed box filled with water (spontaneous phase separation), monodisperse polystyrene (PS) particles were synthesized. At the coexistence between DPS and spontaneous phase separation, the sizes of cap and particle were changed. Also, the volume of PS solutions influences on the particle shape. Since the unique structures could be utilized into various applications, if advanced techniques such as membrane-based controlled water feeding is developed, monodisperse acorn-like particles could be tuned.

Flow Characteristics in a Particle/Bubble Motion with Hybride PIV (Hybride PIV에 의한 단일입자/기포운동에 관한 연구)

  • Choi, Hae-Man;Terauchi, T.;Monji, H.;Matsui, G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.7-12
    • /
    • 2002
  • As the first step to investigate the fundamental mechanism of a dispersed two-phase flow, we studied the detailed interactions between bubble or particle motion and flow around it. Experiments were carried out with a rising bubble or particle in stagnant water in a vertical pipe. Particles with different densities, and/or different shapes were used for comparison with a bubble. We adopted 3D-PTV (Three-Dimensional Particle Tracking Velocimetry) for measuring the bubble or particle motions, and PIV (Particle Image Velocimetry) for measuring the water flow simultaneously (Hybrid PIV). The experimental results showed that the oblate spheroidal solid particle rose along the longer axis direction at the point that the inclination of the longer axis reached the maximum, and the inclination direction changed after moving. The bubble moved to the direction that the spheroid's projected width grew up to the largest, and the minor axis of the oblate spheroidal body of the bubble was parallel to the moving direction. The trajectory of the center of the particle/bubble which was measured with 3D-PTV, was marked on the section (x-y) of the pipe. It exhibited the pattern of the particle/bubble motion.

A Study of Particle Motion for Nozzle Geometry and Particle Diameter in Turbulent Jet Flow (노즐 형상 및 입경에 따른 난류 분류중의 미립자 유동 특성에 관한 연구)

  • 김종철;황승식;전운학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.17-31
    • /
    • 1999
  • This paper is a review of the results of examining the flow characteristics of gas and particles with regards to pipe-type nozzle and converging nozzles depending on nozzle geometry. The nozzles used in this experiment are the pipe-type nozzle which can sufficiently mix the gas and particles, and the converging nozzle which can rapidly accelerate fluid . The particles used at the time of this experiment each measured 0.8, 30, 60 and 80${\mu}{\textrm}{m}$ in the diameter. The Phase Doppler Particle Analyzer was used to measure the velocity of each particle, and the Hot-wire probe was used to measure the spectrum in order to analyze the flow near the nozzle exit of the 0.8${\mu}{\textrm}{m}$ particle.

  • PDF

Effect of Molar Ratio of $Fe_2O_3$ and BaO Addition on the Characteristics of Sr-Ferrite ($Fe_2O_3$몰비 및 B\ulcorner첨가가 Sr-Ferrite 특성에 미치는 영향)

  • 문기훈;심영재;조성걸
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.453-460
    • /
    • 1997
  • Sr-ferrite having magnetoplumbite structure is similar to Ba-ferrite in magnetic characteristics, but better magnetic characteristics for using motor application. To improve remanence magnetic flux density(Br) and coercive force(iHc), it is necessary that sintered ferrites must have high density and grain size less than 1 $\mu$m. By varying n values in SrO.nFe2O3 basic composition, calcination temperature, and BaO addition, Sr-ferrite powder and sintered specimen was prepared. The n values, calcination temperature, and BaO addition affected secondary phase formation, particle size, and particle shape. BaO addition enhanced Fe2O3 secondary phase and hexagonal shape particle. Fe2O3 phase reduced sintered density which greatly decreased Br.

  • PDF

Particulate Two-Phase Flow Analysis for Fouling Prediction(I)-Design of Hot Wind Tunnel and Its Performance Experiment- (파울링 예측을 위한 가스-입자 이상 유동 해석(1)-고온 풍동 설계 및 성능실험-)

  • Ha, Man-Yeong;Lee, Dae-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3695-3705
    • /
    • 1996
  • We designed the hot wind tunnel to reproduce the conditions of utility boiler and carried out its performance test, in order to investigate the particulate two-phase flow behaviour, the fouling and heat transfer characteristics to the heat exchanger. The hot wind tunnel introduces the control system to control the temperature in the test section. The particle is injected into the hot gas stream. The fouling probe (cylindrical tube) is positioned normal to the particulate gas-particle two-phase flow and cooled by the air. The temperature of gas and cooling air, and temperature in the fouling probe are measured as a function of time, giving the local and averaged heat transfer and fouling factor. The shape of particulate deposition adhered to the fouling probe is also observed.

Solid Particle Erosion of CVD Diamond (CVD 다이아몬드 코팅의 고체입자 Erosion 특성)

  • 김종훈;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.69-73
    • /
    • 1997
  • Microwave Plasma assisted CVD (Chemical Vapor Deposition) and DC Plasma CVD were used to prepare thin and thick diamond film, respectively. Diamond coated silicon nitride and fiee standing diamond thick film were eroded by silicon carbide particles. The velocity of the solid particle was about 220m/sec. Phase transformation and the other crack formation were investigated by using Raman spectroscopy and microscopy.

  • PDF