Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.61

Anisotropic Acorn-like Particle Fabrication Via a Dynamic Phase Separation Method  

Park, Chul Ho (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER))
Baek, Il-hyun (Green gas Research centerKorea Institute of Energy Research (KIER))
Publication Information
Membrane Journal / v.29, no.1, 2019 , pp. 61-65 More about this Journal
Abstract
Anisotropic particles have been issued in various fields due to their unique physical properties. Herein, a novel dynamic phase separation method (DPS) is introduced to fabricate anisotropic acorn-like nanoparticles. DPS consists of two dynamic conditions; solvent evaporation and nonsolvent induced precipitation. The bottom layer is controlled by feeding the water as a non-solvent diluent, and the phase separation of the upper layer relies on the diffusion and evaporation of a volatile good solvent. At this condition, the acorn-like particles were fabricated. Under a closed box filled with water (spontaneous phase separation), monodisperse polystyrene (PS) particles were synthesized. At the coexistence between DPS and spontaneous phase separation, the sizes of cap and particle were changed. Also, the volume of PS solutions influences on the particle shape. Since the unique structures could be utilized into various applications, if advanced techniques such as membrane-based controlled water feeding is developed, monodisperse acorn-like particles could be tuned.
Keywords
anisotropic particle; acorn-like particle; phase separation; polystyrene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Higuchi, A. Tajima, H. Yabu, and M. Shimomura, "Spontaneous formation of polymer nanoparticles with inner micro-phase separation structures", Soft Matter, 4, 1302 (2008).   DOI
2 M. Cui, T. Emrick, and T. P. Russell, "Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles", Science, 342, 460 (2013).   DOI
3 H. Yue and G. Ma, "Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications", Vaccine, 33, 5927 (2015).   DOI
4 G. Paramasivam, N. Kayambu, A. M. Rabel, A. K. Sundramoorthy, and A. Sundaramurthy, "Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bio-imaging, drug delivery and theranostics", Acta Biomaterialia, 49, 45 (2017).   DOI
5 L. C. Bradley, W.-H. Chen, and D. Lee, in Anisotropic Particle Assemblies, N. Wu, D. Lee, and A. Striolo, Eds., Elsevier, Amsterdam, 201-231 (2018).
6 W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, "Industrial applications of nanoparticles", Chem. Soc. Rev., 44, 5793 (2015).   DOI
7 R. Deng, S. Liu, F. Liang, K. Wang, J. Zhu, and Z. Yang, "Polymeric janus particles with hierarchical structures", Macromolecules, 47, 3701 (2014).   DOI
8 C. H. Park, N.-o. Chung, and J. Lee, "Monodisperse red blood cell-like particles via consolidation of charged droplets", J. Coll. Interf. Sci., 361, 423 (2011).   DOI
9 Q. Zhang, S. Ghosh, S. Samitsu, X. Peng, and I. Ichinose, "Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles", J. Mater. Chem., 21, 1684 (2011).   DOI
10 S. Chen, S. Gao, J. Jing, and Q. Lu, "Designing 3D biological surfaces via the breath-figure method", Adv. Health. Mat., 7, 1701043 (2018).   DOI
11 P. Marchetti, M. Mechelhoff, and A. G. Livingston, "Tunable-porosity membranes from discrete nanoparticles", Sci. Reports, 5, 17353 (2015).   DOI
12 P. Chul Ho, "Change of surface morphology with the spreading rate of organic solution during interfacial polymerization for polyamide-based thin film composite membrane manufacturing process", Membr. J., 27, 506 (2017).   DOI
13 C. H. Park, H. Bae, W. Choi, K. Lee, D.-g. Oh, J. Lee, and J.-H. Lee, "Thin film composite membrane prepared by interfacial polymerization as an ion exchange membrane for salinity gradient power", J. Indus. Eng. Chem., 59, 362 (2018).   DOI
14 C. H. Park, H. Bae, S. J. Kwak, M. S. Jang, J.-H. Lee, and J. Lee, "Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance", Macromol. Res., 24, 314 (2016).   DOI
15 A. G. Luque-Alcaraz, J. Lizardi-Mendoza, F. M. Goycoolea, I. Higuera-Ciapara, and W. Arguelles-Monal, "Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier", RSC Adv., 6, 59250 (2016).   DOI
16 I. Lesov, Z. Valkova, E. Vassileva, G. S. Georgiev, K. Ruseva, M. Simeonov, S. Tcholakova, N. D. Denkov, and S. K. Smoukov, "Bottom-up synthesis of polymeric micro- and nanoparticles with regular anisotropic shapes", Macromol., 51, 7456 (2018).   DOI
17 T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, "Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles", Langmuir, 26, 13086 (2010).   DOI
18 C. H. Park and J. Lee, "Electrosprayed polymer particles: Effect of the solvent properties", J. Appl. Poly. Sci., 114, 430 (2009).   DOI
19 H. Yabu, T. Higuchi, K. Ijiro, and M. Shimomura, "Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process", Chaos: An Interdisciplinary J. Nonlinear Sci., 15, 047505 (2005).   DOI
20 H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, and H. Jinnai, "Polymer janus particles containing block-copolymer stabilized magnetic nanoparticles", ACS Appl. Material. & Interf., 5, 3262 (2013).   DOI