• Title/Summary/Keyword: particle migration

Search Result 90, Processing Time 0.028 seconds

Effect of particle migration on the heat transfer of nanofluid

  • Kang, Hyun-Uk;Kim, Wun-Gwi;Kim, Sung-Hyun
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.99-107
    • /
    • 2007
  • A nanofluid is a mixture of solid nanoparticles and a common base fluid. Nanofluids have shown great potential in improving the heat transfer properties of liquids. However, previous studies on the characteristics of nanofluids did not adequately explain the enhancement of heat transfer. This study examined the distribution of particles in a fluid and compared the mechanism for the enhancement of heat transfer in a nanofluid with that in a general microparticle suspension. A theoretical model was formulated with shear-induced particle migration, viscosity-induced particle migration, particle migration by Brownian motion, as well as the inertial migration of particles. The results of the simulation showed that there was no significant particle migration, with no change in particle concentration in the radial direction. A uniform particle concentration is very important in the heat transfer of a nanofluid. As the particle concentration and effective thermal conductivity at the wall region is lower than that of the bulk fluid, due to particle migration to the center of a microfluid, the addition of microparticles in a fluid does not affect the heat transfer properties of that fluid. However, in a nanofluid, particle migration to the center occurs quite slowly, and the particle migration flux is very small. Therefore, the effective thermal conductivity at the wall region increases with increasing addition of nanoparticles. This may be one reason why a nanofluid shows a good convective heat transfer performance.

경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구 (Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Migration Behavior of Bead-spring Dumbbell Models under Microchannel Flow from Dissipative Particle Dynamics Simulations

  • Oh, Kwang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2426-2430
    • /
    • 2007
  • Dissipative particle dynamics simulations of bead-spring dumbbell models under microchannel flow were performed and the effects of the deformation on their migration behavior were discussed. Dumbbells were found to migrate toward the walls or the channel center depending on the stiffness. Stiff dumbbells migrated toward the walls. In any cases, the dumbbells were found to have a stronger tendency to move toward the channel center in more deformable conditions.

Prediction of Concrete Pumping Using Various Rheological Models

  • Choi, Myoung Sung;Kim, Young Jin;Kim, Jin Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.269-278
    • /
    • 2014
  • When concrete is being transported through a pipe, the lubrication layer is formed at the interface between concrete and the pipe wall and is the major factor facilitating concrete pumping. A possible mechanism that illustrates to the formation of the layer is the shear-induced particle migration and determining the rheological parameters is a paramount factor to simulate the concrete flow in pipe. In this study, numerical simulations considering various rheological models in the shear-induced particle migration were conducted and compared with 170 m full-scale pumping tests. It was found that the multimodal viscosity model representing concrete as a three-phase suspension consisting of cement paste, sand and gravel can accurately simulate the lubrication layer. Moreover, considering the particle shape effects of concrete constituents with increased intrinsic viscosity can more exactly predict the pipe flow of pumped concrete.

정밀여과에서 임계플럭스(Critical flux)에 관한 이론 및 실험적 고찰 (The Critical Flux in Microfiltration: Comparison between Theoretical and Experimental Values)

  • 윤성훈;이정학
    • 멤브레인
    • /
    • 제7권3호
    • /
    • pp.150-156
    • /
    • 1997
  • 입자의 정밀여과에 있어 임계플럭스의 이론치를 계산하기 위해 확산(diffusion), 횡방향이동(lateral migration), 전단유도확산(shear induced diffusion), 그리고 입자의 정전기적 반발력에서 기인하는 상호작용에 의한 상승이동(interation enhanced migration) 등의 입자의 역전달 이동을 고려하였다. 보통의 여과조건에서 제타전위의 절대치가 20~40mV이고 직경이 0.1$\mu{m}$~10$\mu{m}$인 입자의 경우 상호작용에 의한 이동이 가장 중요한 역전달 메카니즘이었다. 입자크기에 따라 계산된 임계플럭스값을 실험적으로 확인하기 위해 다양한 크기를 갖는 구형인 적철광(hematite)입자를 합성하여 여과실험을 수행하였다. 이 실험치는 역전달 이론에 의해 예측된 플럭스의 이론치와 비교적 잘 일치하였다.

  • PDF

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

원형 마이크로채널 내의 입자가 부유된 유동의 특성 (Characteristics of Particle Laden Flows in Circular Microchannels)

  • 김영원;진송완;유정열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2005
  • Experimental study has been conducted to evaluate characteristics of particle laden flows at the ratio of channel diameter to particle diameter (B = 14.9, 21.6 and 55). Particle velocities and radial concentrations are obtained using a microscope Nd:YAG laser and cooled CCD camera. Results show that there are relative velocities between the fluid and the particles at B = 14.9. It is also observed that the particles are accumulated at r=$0.5\∼0.82R$, with R being tile tube radius, and particle migration occurs at small Reynolds number, by comparing with the results obtained in macro scale. This gives optimal factors for designing microfluidic channels for cell or Particle separation, particle focusing, and so on.

  • PDF

미세 Diatom 입자 이동에 의한 모래지반의 투수 특성 변화 (Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration)

  • 표원미;이종섭;이주용;홍원택
    • 한국지반공학회논문집
    • /
    • 제34권2호
    • /
    • pp.19-32
    • /
    • 2018
  • 심해저 지반에서 가스하이드레이트를 추출하는 경우 diatom과 같은 미세 입자 이동으로 인하여 해저 사면파괴 및 생산성 저하가 발생할 수 있으므로, 미세 입자 이동과 동반한 해저 지반특성 변화에 대한 연구가 요구된다. 본 연구에서는, 모래 지반에 대하여 투수가 발생할 시 미세 diatom 입자 이동으로 인한 지반의 수리 특성 변화를 평가하고자 하였다. 우선 동해 울릉분지 가스하이드레이트 퇴적층을 모사하기 위하여 주문진 표준사와 diatom 혼합 시료를 부피비에 따라 15개의 시료로 조성 및 변수위 투수실험을 수행하였다. 또한 diatom 부피비 50% 및 0%인 교호층 시료의 상 하부 수압차를 3kPa, 6kPa, 9kPa로 조정하여 정수위 투수실험을 수행함으로써 미세 diatom 입자 이동을 모사하고 입자이동 구간에서의 투수계수 및 전기비저항을 측정하였다. 변수위 투수 실험 결과, diatom의 부피비가 증가할수록 시료의 투수계수가 감소하였고, 투수계수 감소 곡선은 diatom 부피비가 10% 이하일 때보다 10%~50% 구간에서 기울기가 완만해 졌으며, diatom 부피비가 50%이상일 때 다시 기울기가 증가하였다. 정수위 투수 실험 결과, diatom이 이동하여 diatom 입자 이동 구간의 투수계수는 감소하고 전기비저항은 증가하였다. 본 연구는 미세 입자 이동이 교호층 지반의 투수계수를 감소시키며, 투수계수와 전기비저항의 반비례관계를 바탕으로 미세 입자 이동으로 인한 혼합시료의 거동을 예측할 수 있음을 보여준다.

Effect of Particle Migration of the Characteristics of Microchannel Flow

  • Kim Y. W.;Jin S. W.;Kim S. W.;Yoo J. Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.119-124
    • /
    • 2004
  • Experimental study was conducted to characterize the flow effect of particle migration in a microchannel which can be used to deliver small amount of liquids, drugs, biological agents and particles in microfluidic devices. Fluorescent particles of $1\{mu}m$ diameter were used to obtain velocity profiles of the fluid in which large particles of $10\{mu}m$ diameter were suspended at different volume fraction of 0.6 and $0.8\%$. Measurements were obtained by using micro-PIV system which contains a Nd:YAG laser with a light of 532-nm wavelength, an inverted epi-fluorescent microscope and a cooled CCD camera to record particle images. The volume fraction of $\phi$ and the particle Reynolds number $Re_p$Rep were used as a parameter to assess the influence of the velocity profile of the suspensions. To expect the slip velocity between the particle and fluids, experiments were carried out at low volume fraction. It was shown that the velocity profile was not influenced by Rep but influenced by the volume fraction, which is in similar trend with the previous study.

  • PDF