• 제목/요약/키워드: particle attrition

검색결과 56건 처리시간 0.027초

입자 크기가 PZT계 압전 후막의 물성에 미치는 영향 (Effects of Particle Size on Properties of PZT -Based Thick Films)

  • 김동명;김정석;천채일
    • 한국세라믹학회지
    • /
    • 제41권5호
    • /
    • pp.375-380
    • /
    • 2004
  • 알루미나 기판 위에 Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbZrO$_3$-PbTiO$_3$ 후막을 스크린 인쇄한 후 800∼100$0^{\circ}C$에서 소결하여 압전 후막을 제조하였다. 마모 밀과 볼 밀 분쇄법을 이용하여 입자 크기가 서로 다른 압전 분말을 제조하였으며, 압전 분말의 입자 크기가 후막의 미세구조와 전기적 성질에 미치는 영향을 조사하였다. 마모 밀링한 분말의 평균 입자 크기는 0.44 $\mu\textrm{m}$로 볼 밀링한 분말의 평균 입자 크기, 2.87 $\mu$m 보다 훨씬 작았다. 후막을 80$0^{\circ}C$에서 소결하였을 때는 마모 밀링한 분말로 제조한 후막의 입자 크기가 볼 밀링한 분말로 제조한 후막의 입자 크기보다 더 작았으며, 소결 온도가 증가함에 따라 그 차이가 점차 감소하였다. 그리고, 전체 소결 온도 구간에서 마모 밀링한 분말로 제조한 후막이 볼 밀링한 분말로 제조한 후막보다 균일하고 치밀한 미세구조를 보였다. 소결 온도가 90$0^{\circ}C$ 이상일 때, 마모 밀링한 분말로 제조한 후막이 볼 밀링한 분말로 제조한 후막보다 우수한 전기적 성질을 가졌다. 90$0^{\circ}C$에서 소결한 마모 밀링한 분말로 제조한 후막의 유전상수($\varepsilon$$_{r}$), 잔류분극(P$_{r}$), 항전계(E$_{c}$)는 각각 559, 16.3 $\mu$C/$cm^2$, 51.3 kV/cm이었다.다..

산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동 (Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics)

  • 황규홍;박정환;윤태경
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

무정형 탄소의 입도분포에 따른 리튬이온이차전지의 탄소부극 특성 (The Effect of Particle Size Distribution of the Nongraphitic Carbon on the Performance of Negative Carbon Electrode in Lithium Ion Secondary Battery)

  • 김현중;이철태
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.781-785
    • /
    • 1998
  • 무정형탄소인 petroleum cokes를 대상으로 attrition mill을 이용하여 6~48시간 동안 분쇄한 후 이를 $700^{\circ}C$에서 1시간 동안 열처리한 후 재료특성과 전기화학적 특성을 조사하였다. 분쇄에 의한 효과에 의하여 입도분포와 BET 비표면적의 변화가 발생하였으며 내부의 층간거리도 변화시킬 수 있었다. 이들의 재료특성 변화에 의한 cyclic voltammogram과 충 방전 특성과의 관계를 조사한 결과, 분쇄시간 12~24시간에서 분쇄된 후의 경우가 $6{\sim}8{\mu}m$의 평균입도를 가지며 비교적 큰 층간거리와 표면적을 가질 때 전기화학적 특성이 비교적 우수하였다.

  • PDF

은 플레이크 분말의 입자크기에 미치는 기계적 밀링 공정변수의 영향 (Effect of Mechanical Milling Parameters on the Particle Size of Silver Flake)

  • 이길근;정해영
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.307-312
    • /
    • 2014
  • This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.

고온 고압 조건하의 기포유동층 반응기에서의 입자 마모특성 (Particle Attrition Characteristics in a Bubbling Fluidized Bed Under High Temperature and High Pressure Conditions)

  • 문종호;이동호;류호정;박영철;이종섭;민병무;진경태
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.359-366
    • /
    • 2014
  • 연소전 $CO_2$ 흡수제인 PKM1-SU와 원유의 접촉분해 촉매인 FCC (fluid catalytic cracking)입자의 고온, 고압 조건 마모 실험을 수행하였다. 지름 15.1 cm, 높이 120 cm에 스파저 튜브(sparger tube, 1 mm 오리피스)를 장착한 원통형 기포유동층반응기를 이용하여, 다양한 온도조건($0{\sim}400^{\circ}C$), 압력조건(0~20 bar)에서 입자마모 실험을 수행하였다. BET, 광학현미경, 입도분석기 등을 이용하여 실험 전, 후 입자를 분석 하였다. 또한 기존의 마모도 측정 방법인 ASTM D5757-95방법을 이용하여 층물질의 높이(4.4~10.2 cm) 및 수분 주입이 입자 마모에 미치는 영향에 대하여 확인하였다.

폐 인듐주석산화물 타겟의 재활용 기술 (Recycling Method of Used Indium Tin Oxide Targets)

  • 이영인;좌용호
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.174-179
    • /
    • 2012
  • In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.

연소 전 CO2 포집 흡수제들의 마모특성 (The Characteristics of Attrition of Absorbents for Pre-combustion CO2 Capture)

  • 류호정;이동호;문종호;박영철;조성호
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.428-436
    • /
    • 2013
  • Attrition characteristics of $CO_2$ absorbents for pre-combustion $CO_2$ capture were investigated to check attrition loss of those absorbents and to determine solid circulation direction and the better $CO_2$ absorbent. The cumulative attrition losses of two absorbents increased with increasing time. However, attrition loss under a humidified condition was lower than that under a non-humidified condition case. Between two absorbents, attrition loss of PKM1-SU absorbent was higher than that of P4-600 absorbent. The average particle sizes of the attrited particles were less than $2.5{\mu}m$ for two absorbents under a non-humidified condition case, and therefore, we could conclude that the main mechanism of attrition for two absorbents is not fragmentation but abrasion. Based on the results from the test for the effect of humidity on the attrition loss, we selected solid circulation direction from SEWGS reactor to regeneration reactor because the SEWGS reactor contains more water vapor than regeneration reactor. Attrition loss and make-up rate of two absorbents were compared based on the results from $CO_2$ sorption capacity tests and attrition tests. Required make-up rate of P4-600 absorbent was lower than that of PKM1-SU absorbent. However, more detail investigation on the optimum regeneration temperature, manufacturing cost, solid circulation rate, regeneration rate, and long-term sorption capacity should be considered to select the best $CO_2$ absorbent.

산소전달량 및 마모손실 측정에 의한 매체순환연소용 산소전달입자 후보 선정 (Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss)

  • 김하나;박재현;백점인;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.404-411
    • /
    • 2016
  • To select appropriate oxygen carrier candidates for chemical looping combustion, reduction characteristics of seven oxygen carriers were measured and discussed using three different reduction gases, such as $H_2$, CO, and $CH_4$. Moreover, attrition losses of those oxygen carriers also measured and compared. Among seven oxygen carrier particles, OCN703-1100 and NiO/bentonite particles showed higher oxygen transfer capacity than other particles, but these particles showed more attrition loss than other particles. C14 and C28 particles which used as cheap oxygen carriers in European country showed lower oxygen transfer capacity and less attrition loss. Based on the experimental results, we could select OCN717-R1SU, NC001, and N002 particles as candidates for future works because these oxygen carriers showed enough oxygen transfer capacity and good attrition resistance.

분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성 (Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature)

  • 이정철;명성재;전명표;조정호;김병익;신동욱
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

입자 크기 분포에 따른 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3 후막의 미세구조 및 압전특성 (Piezoelectric properties and microstructure of 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3thick film with particle size distribution)

  • 문희규;송현철;김상종;최지원;강종윤;윤석진
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.418-424
    • /
    • 2008
  • The PZT based piezoelectric thick films prepared by screen printing method have been mainly used as a functional material for MEMS applications due to their compatibility of MEMS process. However the screen printed thick films generally reveal poor electrical and mechanical properties because of their porous microstructure. To improve microstructure we mixed attrition milled powder with ball milled powder of 0.01Pb$(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3$-$0.35PbTiO_3$-$0.23PbZrO_3$+0.1 wt% ${Y_2}{O_3}$+1.5 wt% ZnO composition. By mixing 25 % of attrition milled powder and 75 % of ball milled powder, the broadest particle size distribution was obtained, leading to a dense thick film with crack-free microstructure and improved dielectric properties. The X-ray diffraction analysis revealed that the film was in wellcrystallized perovskite phase. The remanent polarization was increased from $13.7{\mu}C/cm^2$ to $23.3{\mu}C/cm^2$ at the addition of 25 % attrition milled powder.