Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.4.174

Recycling Method of Used Indium Tin Oxide Targets  

Lee, Young-In (Department of Fine Chemical Engineering, Hanyang University)
Choa, Yong-Ho (Department of Fine Chemical Engineering, Hanyang University)
Publication Information
Korean Journal of Materials Research / v.22, no.4, 2012 , pp. 174-179 More about this Journal
Abstract
In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.
Keywords
indium tin oxide; recycling; nanopowder; sputtering; sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, J. Appl. Phys., 84, 6859 (1998).   DOI   ScienceOn
2 F. C. Krebs, Org. Electron., 10, 761 (2009).   DOI   ScienceOn
3 S. -J. Park and H. -C. Shin, Kor. J. Mater. Res., 22(1), 1 (2011) (in Korean).
4 B. -C. Kim, J. -H. Lee, J. -J. Kim and T. Ikegami, Mater. Lett., 52, 114 (2002).   DOI   ScienceOn
5 C. P. Udawatte and K. Yanagisawa, J. Am. Ceram. Soc., 84, 251 (2001).   DOI   ScienceOn
6 G. Zhu, Z. Yang, L. Zhi, H. Yang, H. Xu and A. Yu, J. Am. Ceram. Soc., 93, 2511 (2010).   DOI   ScienceOn
7 Y. -M. Kong, Y. -J. Lee, S. -B. Heo, H. M. Lee, M. -S. Seo, Y. -S. Kim and D. Kim, Kor. J. Mater. Res., 22(1), 24 (2011) (in Korean).
8 Mineral Commodity Summaries, p. 76, U. S. Geological Survey, USA (2009).
9 S. R. Taylor and S. M. McLennan, Rev. Geophys., 33, 241 (1995).   DOI   ScienceOn
10 R. M. German, Powder Metallurgy Science, 2nd ed., p. 69, Metal Powder Industries Federation, Princeton, USA (1994).
11 B. -C. Kim, J. -H. Lee, J. -J. Kim, H. Y. Lee and J. -S. Lee, Mater. Res. Bull., 40, 395 (2005).   DOI   ScienceOn
12 C. P. Udawatte and K. Yanagisawa, J. Am. Ceram. Soc., 84, 251 (2001).   DOI   ScienceOn
13 B. -C. Kim, S. -M. Kim, J. -H. Lee and J. -J. Kim, J. Am. Ceram. Soc., 85, 2083 (2002).   DOI   ScienceOn
14 T. Minami, Thin Solid Films, 516, 5822 (2008).   DOI   ScienceOn