• Title/Summary/Keyword: partial-interaction

Search Result 347, Processing Time 0.031 seconds

Dislocation-particle Interaction in Precipitation Strengthened Ni3(Al, Cr)-C (석출강화된 Ni3(Al, Cr)-C계에서의 전위-석출입자간의 상호작용)

  • Han, Chang-Suck
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • The morphology of deformation induced dislocations in polycrystalline $Ni_3$(Al, Cr) containing $M_{23}C_6$ precipitates has been investigated in terms of transmission electron microscopy(TEM). Fine Polyhedral precipitates of $M_{23}C_6$ appeared in the matrix by aging at temperatures around 973 K after solution annealing at 1423 K. TEM examination revealed that the $M_{23}C_6$ phase and the matrix lattices have a cube-cube orientation relationship and keep partial atomic matching at the {111} interface. After deformation at temperature below 973 K, typical Orowan loops were observed surrounding the $M_{23}C_6$ particles. At higher deformation temperatures, the Orowan loops disappeared and the morphology of dislocations at the particle-matrix interfaces suggested the existence of attractive interaction between dislocations and particles. The change of the interaction modes between dislocation and particles with increasing deformation temperature can be considered as a result of strain relaxation at the interface bet ween matrix and particles.

  • PDF

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Practical formula for determining peak acceleration of footbridge under walking considering human-structure interaction

  • Cao, Liang;Zhou, Hailei;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • In this paper, an analytical formulation is proposed to predict the vertical vibration response due to the pedestrian walking on a footbridge considering the human-structure interaction, where the footbridge and pedestrian are represented by the Euler beam and linear oscillator model, respectively. The derived coupled equation of motion is a nonlinear fourth-order partial differential equation. An uncoupled solution strategy based on the combined weighted residual and perturbation method) is proposed to reduce the tedious computation, which allows the separate integration between the bridge and pedestrian subsystems. The theoretical study demonstrates that the pedestrian subsystem can be treated as a structural system with added mass, damping, and stiffness. The analysis procedure is then applied to a case study under the conditions of single pedestrian and multi pedestrians, and the results are validated and compared numerically. For convenient vibration design of a footbridge, the simplified peak acceleration formula and the idea of decoupling problem are thus proposed.

The effect of Virtual CSR Co-Create on Users' Gameful Pleasure

  • Fei Zhou;Songling Xu;Yuanxi Ding
    • Journal of East Asia Management
    • /
    • v.4 no.2
    • /
    • pp.19-38
    • /
    • 2023
  • With the progress of information technology and the rapid development of the gamification marketing, corporate marketing through virtual CSR co-create as customer acquisition, customer retention strategy has become the hot topic, but the reality results show that the effect of virtual CSR co-create fails to reach an enterprise's marketing purposes. Based on the success model of D&M information system, from the perspective of customer engagement, this study analyzes how enterprises achieve customer engagement and bring gameful experience to customers through gamification marketing in the context of virtual CSR co-create. The empirical results show that the quality of game information -- social interaction and sense of achievement in the context of virtual CSR co-create have a significant positive impact on consumers' gameful experience, and customer engagement plays a partial mediating role between social interaction, sense of achievement and consumers' gameful experience.

Partial AUC maximization for essential gene prediction using genetic algorithms

  • Hwang, Kyu-Baek;Ha, Beom-Yong;Ju, Sanghun;Kim, Sangsoo
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • Identifying genes indispensable for an organism's life and their characteristics is one of the central questions in current biological research, and hence it would be helpful to develop computational approaches towards the prediction of essential genes. The performance of a predictor is usually measured by the area under the receiver operating characteristic curve (AUC). We propose a novel method by implementing genetic algorithms to maximize the partial AUC that is restricted to a specific interval of lower false positive rate (FPR), the region relevant to follow-up experimental validation. Our predictor uses various features based on sequence information, protein-protein interaction network topology, and gene expression profiles. A feature selection wrapper was developed to alleviate the over-fitting problem and to weigh each feature's relevance to prediction. We evaluated our method using the proteome of budding yeast. Our implementation of genetic algorithms maximizing the partial AUC below 0.05 or 0.10 of FPR outperformed other popular classification methods.

Nonlinear Analysis of Steel-concrete Composite Girder Using Interface Element (경계면 요소를 사용한 강·콘크리트 혼합 거더의 비선형 거동 해석)

  • Kwon, Hee-Jung;Kim, Moon Kyum;Cho, Kyung Hwan;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.281-290
    • /
    • 2009
  • In this study, an analysis technique of hybrid girder considering nonlinearity of steel-concrete contact surface is presented. Steel-concrete hybrid girder shows partial-interaction behavior due to the deformation of shear connectors, slip and detachment at the interface, and cracks under the applied loads. Therefore, the partial-interaction approach becomes more reasonable. Contact surface is modeled by interface element and analyzed nonlinearly because of cost of time and effort to detailed model and analysis. Steel and Concrete are modeled considering non-linearity of materials. Material property of contact surface is obtained from push-out test and input to interface element. For the constitutive models, Drucker-Prager and smeared cracking model are used for concrete in compression and tension, respectively, and a von-Mises model is used for steel. This analysis technique is verified by comparing it with test results. Using verified analysis technique, various analyses are performed with different parameters such as nonlinear material property of interface element and prestress. The results are compared with linear analysis result and analysis result with the assumption of full-interaction.

Eliminations from (E)-2,4-Dinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effects of Leaving Group and Base-Solvent on the Nitrile-Forming Transition-State

  • Cho, Bong Rae;Pyun, Sang Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1030-1034
    • /
    • 2013
  • Elimination reactions of $(E)-2,4-(NO_2)_2C_6H_2CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by $R_3N/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. The reactions are second-order and exhibit Br$\ddot{o}$nsted ${\beta}$ = 0.80-0.84 and ${\mid}{\beta}_{lg}{\mid}$ = 0.39-0.42, respectively. For all leaving groups and bases employed in this study, the ${\beta}$ and ${\mid}{\beta}_{lg}{\mid}$ values remained almost the same. The results can be described by a negligible $p_{xy}$ interaction coefficient, $p_{xy}={\partial}{\beta}/pK_{lg}={\partial}{\beta}_{lg}/pK_{BH}{\approx}0$, which describes the interaction between the base catalyst and the leaving group. The negligible pxy interaction coefficient is consistent with the $(E1cb)_{irr}$ mechanism. Change of the base-solvent system from $R_3N$/MeCN to $R_3N/R_3NH^+$-70 mol % MeCN(aq) changed the reaction mechanism from E2 to $(E1cb)_{irr}$. Noteworthy was the relative insensitivity of the transition state structure to the reaction mechanism change.

Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction

  • Anwar Hossain, K.M.;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.659-676
    • /
    • 2005
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. The behaviour of such walling under in-plane shear is important in order to utilise this system as shear elements in a steel framed building. Steel sheet-concrete interface governs composite action, overall behaviour and failure modes of such walls. This paper describes the finite element (FE) modelling of the shear behaviour of walls with particular emphasis on the simulation of steel-concrete interface. The modelling of complex non-linear steel-concrete interaction in composite walls is conducted by using different FE models. Four FE models are developed and characterized by their approaches to simulate steel-concrete interface behaviour allowing either full or partial composite action. Non-linear interface or joint elements are introduced between steel and concrete to simulate partial composite action that allows steel-concrete in-plane slip or out of plane separation. The properties of such interface/joint elements are optimised through extensive parametric FE analysis using experimental results to achieve reliable and accurate simulation of actual steel-concrete interaction in a wall. The performance of developed FE models is validated through small-scale model tests. FE models are found to simulate strength, stiffness and strain characteristics reasonably well. The performance of a model with joint elements connecting steel and concrete layers is found better than full composite (without interface or joint elements) and other models with interface elements. The proposed FE model can be used to simulate the shear behaviour of composite walls in practical situation.

A Study on the Learner's Satisfaction of Computer Practice Classes by applying BL: Focusing on contents and instructor interactions (블렌디드 러닝을 활용한 컴퓨터 실습수업에서의 학습자 만족 연구: 콘텐츠 요인과 교수자 상호작용을 중심으로)

  • Jun, Byoungho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.221-230
    • /
    • 2017
  • BL(Blended Learning) has been presented as a promising alternative learning approach. BL is defined as a learning approach that combines e-learning and face-to-face classroom learning. The adoption of BL in computer practice class is necessary due to the characteristics of computer practice class itself. This study proposes a research model that examines the determinants of learner's satisfaction of computer practice classes in BL environment. Considering the characteristics of computer practices classes contents and instructor interaction were identified as the determinants. The research model is tested using a questionnaire survey of 141 participants. Confirmatory factor analysis (CFA) was performed to test the reliability and validity of the measurements. The partial least squares (PLS) method was used to validate the measurement and hypotheses. The empirical findings shows that contents easiness and contents constructs are the primary determinants of instructor interaction in BL. Instructor interaction was also found to be related to the learner's satisfaction resulting in re-using. The findings provide insight into the planning and utilizing BL in computer practice classes to enhance learner's satisfaction.

A Criterion for Interaction Analysis and Loop Pairing Among Control System Variables (제어 시스템 변수들간의 상호작용 해석 및 루프 페어링을 위한 판별기준)

  • Ko Jae Wook;Yoon En Sup;Evans L. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.64-74
    • /
    • 1999
  • Using the steady state gains, an appropriate criterion used for the interaction analysis among variables and the loop pairing is suggested. Based upon the suggested criterion derived from the derivative relation of implicit function, the SISO pairing which has minimum interaction among control system variables and good control performance can be determined. The relative effect among diagonal gains and off-diagona gains, which was not considered in other criteria, can be explained deterministically Also, the criterion can be easily applied to partial MIMO pairing. This criterion was applied to several examples to illustrate its usefulness in finding the feasible SISO pairing and MIMO pairing

  • PDF