DOI QR코드

DOI QR Code

Eliminations from (E)-2,4-Dinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effects of Leaving Group and Base-Solvent on the Nitrile-Forming Transition-State

  • Received : 2012.12.26
  • Accepted : 2013.01.03
  • Published : 2013.04.20

Abstract

Elimination reactions of $(E)-2,4-(NO_2)_2C_6H_2CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by $R_3N/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. The reactions are second-order and exhibit Br$\ddot{o}$nsted ${\beta}$ = 0.80-0.84 and ${\mid}{\beta}_{lg}{\mid}$ = 0.39-0.42, respectively. For all leaving groups and bases employed in this study, the ${\beta}$ and ${\mid}{\beta}_{lg}{\mid}$ values remained almost the same. The results can be described by a negligible $p_{xy}$ interaction coefficient, $p_{xy}={\partial}{\beta}/pK_{lg}={\partial}{\beta}_{lg}/pK_{BH}{\approx}0$, which describes the interaction between the base catalyst and the leaving group. The negligible pxy interaction coefficient is consistent with the $(E1cb)_{irr}$ mechanism. Change of the base-solvent system from $R_3N$/MeCN to $R_3N/R_3NH^+$-70 mol % MeCN(aq) changed the reaction mechanism from E2 to $(E1cb)_{irr}$. Noteworthy was the relative insensitivity of the transition state structure to the reaction mechanism change.

Keywords

References

  1. Gandler, J. R. The Chemistry of Double Bonded Functional Groups; Patai, S., Ed.; John Wiley and Sons: Chichester, 1989; Vol. 2, Part 1, pp 734-797.
  2. Jencks, W. P. Chem. Rev. 1985, 85, 511. https://doi.org/10.1021/cr00070a001
  3. Gandler, J. R; Jencks, W. P. J. Am. Chem. Soc. 1982, 104, 1937. https://doi.org/10.1021/ja00371a024
  4. Thibblin, A. J. Am. Chem. Soc. 1988, 110, 1582.
  5. Thibblin, A. J. Am. Chem. Soc. 1989, 111, 5412. https://doi.org/10.1021/ja00196a054
  6. Cho, B. R.; Pyun, S. Y. J. Am. Chem. Soc. 1991, 113, 3920. https://doi.org/10.1021/ja00010a037
  7. Meng, Q.; Thibblin, A. J. Am. Chem. Soc. 1995, 117, 9399. https://doi.org/10.1021/ja00142a003
  8. Olwegard, M.; McEwen, I.; Thibblin, A.; Ahberg, P. J. Am. Chem. Soc. 1985, 107, 7494. https://doi.org/10.1021/ja00311a045
  9. Cho, B. R.; Kim, K. D.; Lee, J. C.; Cho, N. S. J. Am. Chem. Soc. 1988, 110, 6145. https://doi.org/10.1021/ja00226a032
  10. Cho, B. R.; Lee, J. C.; Cho, N. S.; Kim, K. D. J. Chem. Soc. Perkin Trans II 1989, 489.
  11. Cho, B. R.; Min, B. K.; Lee, C. W.; Je, J. T. J. Org. Chem. 1991, 56, 5513. https://doi.org/10.1021/jo00019a008
  12. Cho, B. R.; Jung, J. H.; Ahn, E. K. J. Am. Chem. Soc. 1992, 114, 3425. https://doi.org/10.1021/ja00035a040
  13. Cho, B. R.; Je, J. T. J. Org. Chem. 1993, 58, 6190. https://doi.org/10.1021/jo00075a009
  14. Cho, B. R.; Cho, N. S.; Song, K. S.; Son, K. N.; Kim, Y. K. J. Org. Chem. 1998, 63, 3006. https://doi.org/10.1021/jo972192v
  15. Pyun, S. Y.; Cho, B. R. J. Org. Chem. 2008, 73, 9451. https://doi.org/10.1021/jo8019412
  16. Cho, B. R.; Pyun, S. Y. Bull. Korean Chem. Soc. 2010, 31, 1043. https://doi.org/10.5012/bkcs.2010.31.04.1043
  17. Cho, B. R.; Maing Yoon, C. O.; Song, K. S. Tetrahedron Lett. 1995, 36, 3193. https://doi.org/10.1016/0040-4039(95)00510-J
  18. Cho, B. R.; Ryu, E. M.; Pyun, S. Y. Bull. Korean Chem. Soc. 2012, 33, 2976. https://doi.org/10.5012/bkcs.2012.33.9.2976
  19. Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45.
  20. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987; (a) pp 214-218, (b) pp 591-616, (c) pp 640-644.
  21. Saunders, W. H., Jr.; Cockerill, A. F. Mechanism of Elimination Reactions; Wiely: New York, 1973; pp 510-523.
  22. Drago, R. S.; Zoltewicz, J. A. J. Org. Chem. 1994, 59, 2824. https://doi.org/10.1021/jo00089a031
  23. Dictionary of Organic Compounds; Mack Printing Co.: Easton, PA, 1982; Vol. 2, p 2258.
  24. Cho, B. R.; Chung, H. S.; Pyun, S. Y. J. Org. Chem. 1999, 64, 8375. https://doi.org/10.1021/jo990752f

Cited by

  1. in 70 mol% MeCN (aq). Effects of the β-Aryl Group and Leaving Group on Nitrile-Forming Transition States vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10791