• Title/Summary/Keyword: partial sum of Fourier series

Search Result 5, Processing Time 0.02 seconds

Partial Sum of Fourier series, the Reinterpret of $L^1$-Convergence Results using Fourier coefficients and theirs Minor Lineage (푸리에 급수의 부분합, 푸리에 계수를 이용한 $L^1$-수렴성 결과들의 재해석과 그 소계보)

  • Lee, Jung-Oh
    • Journal for History of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • This study concerns with partial sum of Fourier series, Fourier coefficients and the $L^1$-convergence of Fourier series. First, we introduce the $L^1$-convergence results. We consider equivalence relations of the partial sum of Fourier series from the early 20th century until the middle of. Second, we investigate the minor lineage of $L^1$-convergence theorem from W. H. Young to G. A. Fomin. Finally, we compare and reinterpret the $L^1$-convergence theorems.

A WEIGHTED FOURIER SERIES WITH SIGNED GOOD KERNELS

  • Chan, Sony;Rim, Kyung Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.935-952
    • /
    • 2017
  • It is natural to try to find a kernel such that its convolution of integrable functions converges faster than that of the $Fej{\acute{e}}r$ kernel. In this paper, we introduce a weighted Fourier partial sums which are written as the convolution of signed good kernels and prove that the weighted Fourier partial sum converges in $L^2$ much faster than that of the $Ces{\grave{a}}ro$ means. In addition, we present two numerical experiments.

A SUMMABILITY FOR MEYER WAVELETS

  • Shim, Hong-Tae;Jung, Kap-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.657-666
    • /
    • 2002
  • ThE Gibbs' phenomenon in the classical Fourier series is well-known. It is closely related with the kernel of the partial sum of the series. In fact, the Dirichlet kernel of the courier series is not positive. The poisson kernel of Cesaro summability is positive. As the consequence of the positiveness, the partial sum of Cesaro summability does not exhibit the Gibbs' phenomenon. Most kernels associated with wavelet expansions are not positive. So wavelet series is not free from the Gibbs' phenomenon. Because of the excessive oscillation of wavelets, we can not follow the techniques of the courier series to get rid of the unwanted quirk. Here we make a positive kernel For Meyer wavelets and as the result the associated summability method does not exhibit Gibbs' phenomenon for the corresponding series .

Path Planning for Manipulators Using Fourier Series (퓨리에 급수를 이용한 매니퓰레이터 경로 계획)

  • 원종화;최병욱;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.27-36
    • /
    • 1992
  • This paper proposes a numerical method of motion planning for manipulators using Foruier series. For a redundant manipulator, we predetermine the trajectories of redundant joints in terms of the Nth partial sum of the fourier series. then the optimal coefficients of the fourier series are searched by the Powell's method. For a nonredundant or redundant manipulator, CS02T-continuous smooth joint trajectory for a point-to-point task can be obtained while considering the frequency response. We apply the proposed method to the 3-link planar manipulator and the PUMA 560 manipulator. To show the validity of the proposed method, we analyze solutions by the Fast Fourier Transform (FFT). Also, several features are discussed to obtain an optimal solution.

  • PDF

A NUMERICAL METHOD OF PREDRTERMINED OPTIMAL RESOLUTION FOR A REDUNDANT MANIPULATOR

  • Won, Jong-Hwa;Choi, Byoung-Wook;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1145-1149
    • /
    • 1990
  • This paper proposes a numerical method for redundant manipulators using predetermined optimal resolution. In order to obtain optimal joint trajectories, it is desirable to formulate redundancy resolution as an optimization problem having an integral cost criterion. We predetermine the trajectories of redundant joints in terms of the Nth partial sum of the Fourier series, which lead to the solution in the desirable homotopy class. Then optimal coefficients of the Fourier series, which yield the optimal solution within the predetermined class, are searched by the Powell's method. The proposed method is applied to a 3-link planar manipulator for cyclic tasks in Cartesian space. As the results, we can obtain the optimal solution in the desirable homotopy class without topological liftings of the solution. To show the validity of the proposed method, we analyze both optimal and extremal solutions by the Fast Fourier Transform (FFT) and discuss joint trajectories on the phase plane.

  • PDF