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A WEIGHTED FOURIER SERIES WITH

SIGNED GOOD KERNELS

Sony Chan and Kyung Soo Rim

Abstract. It is natural to try to find a kernel such that its convolution of
integrable functions converges faster than that of the Fejér kernel. In this
paper, we introduce a weighted Fourier partial sums which are written
as the convolution of signed good kernels and prove that the weighted
Fourier partial sum converges in L2 much faster than that of the Cesàro
means. In addition, we present two numerical experiments.

1. Introduction

Any f ∈ L1([−π, π]) ≡ L1 is associated with its Fourier series

f ∼
∞
∑

k=−∞

cke
ikx,

where the Fourier coefficients ck are given by

ck =
1

2π

∫ π

−π

f(x)e−ikx dx.

The n-th Fourier partial sum of f is defined as

(1) sn(f, x) =
∑

|k|≤n

cke
ikx =

1

2π

∫ π

−π

Dn(x− y)f(y) dy = (Dn ∗ f)(x),

where Dn(x) =
∑n

k=−n eikx is the Dirichlet kernel and Dn∗f is the convolution
of Dn and f . The kernel Dn(x) also has the closed form of

(2) Dn(x) =
sin((n+ 1

2 )x)

sin(x2 )
.

There are many results on sn(f, x) which has been studied up to now. Even
though integral value of the even function Dn(x) is 1 but is not in L1, precisely
‖Dn‖1 = O(lnn).Moreover, sn(f, x) fails to converge for some continuous func-
tions. In [5], Fejér introduces the Cesàro mean of the Fourier partial sums, by
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which he extends the validity of the series. More precisely, better convergence
properties are achieved by means of Cesàro sums which are defined by

(3) σn(f, x) =
1

n+ 1

n
∑

k=0

sk(f, x).

Setting Kn(x) = 1
n+1

∑n
k=0 Dk(x), which is called the Fejér kernel, one has

σn(f, x) = (Kn ∗ f)(x). Since the Cesàro mean converges in L1, this can be
used as alternative for the convergence of the Fourier series. In spite of the
advantage, its convergence rate is not better than the Fourier partial sums for
smooth functions. So it is of interest to find another weighted Fourier partial
sums which have higher convergence rate than Cesàro means.

Before we outline the results of this paper, it will be convenient and necessary
to recall some definitions and set down some notational conventions, most of
which have been taken from Zygmund [17].

There are many results on Cesàro means for Fourier series. We only make
mention of a few recent articles here. For absolute summability, see [2, 6, 12, 16].
There are properties for Cesàro summabilities of positive (or, negative) order
([3], [4]). About the summability of Cesàro means over various domains, refer to
[1, 13, 14, 15]. Also, [7, 11] analyze Cesàro means over several kinds of function-
spaces. Moreover, there are some results for orthonormality of Dirichlet kernels
[8, 9]. In [10] the author relates Cesàro means to a Markov process.

In this paper, we introduce a weighted Fourier series motivated from the
Cesàro mean of the Fourier partial sums and derive the convolution form of the
suggested series, equipped with a family of proper signed kernels. In addition,
we show that L2 convergence of the weighted Fourier partial sums is much
faster than that of the Cesàro means.

This article is organized as follows. Section 2 provides the definition and
properties of a weighted Fourier partial sum equipped with second order deriva-
tives of eikx’s, which are motivated from the Cesàro mean in first order deriva-
tives. Also it is shown that the signed kernel derived from the weighted Fourier
partial sum satisfies three properties which are used to prove the reproducing
result for the weighted Fourier series in the next section. In Section 3, the
first main theorem, pointwise convergence for weighted Fourier partial sums is
stated and proved. In Section 4, it is proven that the L2-norm convergence of
weighted Fourier partial sums is better compared to that of the Cesàro means.
The last section presents some numerical results of two functions.

2. Kernel for the weighted Fourier series

We write the Cesàro mean as the first derivatives,

σn(f, x) = (Kn ∗ f)(x)

=
∑

|k|≤n

cke
ikx − 1

n+ 1

(

d

d(ix)

n
∑

k=0

cke
ikx +

d

d(−ix)

n
∑

k=0

c−ke
−ikx

)

(4)
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and replace first order derivatives with second order derivatives in (4) as
(5)

σ̃n(f, x) =
∑

|k|≤n

cke
ikx − 1

(n+ 1)2

(

d2

d(ix)2

n
∑

k=0

cke
ikx +

d2

d(−ix)2

n
∑

k=0

c−ke
−ikx

)

.

And now we explore how the notion of σ̃n(f, x) applies to Fourier series readily.
First, put

(6) Fn(x) = Dn(x) +
1

(n+ 1)2
d2

dx2
Dn(x) (n ≥ 0).

From the definition of σ̃n, the next result follows:

Proposition 2.1. For n ≥ 0, we have

σ̃n(f, x) = (Fn ∗ f)(x)

=
∑

|k|≤n

(

1− k2

(n+ 1)2

)

cke
ikx.

(7)

Moreover, some elementary properties of Fn(x) are stated below.

Lemma 2.2. (a) Fn(x) =
∑

|k|≤n

(

1− k2

(n+ 1)2

)

eikx.

(b) Fn(x) =
−(n+ 1

2 ) sin(
x
2 ) cos((n+ 1)x) + 1

2 sin((n+ 1
2 )x)

(n+ 1)2 sin3(x2 )
.

Proof. From the definition of Fn, since

d2

dx2
Dn(x) = −

∑

|k|≤n

k2 eikx,

we have

Fn(x) =
∑

|k|≤n

eikx − 1

(n+ 1)2

∑

|k|≤n

k2 eikx

=
∑

|k|≤n

(

1− k2

(n+ 1)2

)

eikx.

This finishes the proof of (a).
From (2), by differentiation, we have

D′
n(x) =

(n+ 1
2 ) cos((n+ 1

2 )x) sin(
x
2 )− 1

2 cos(
x
2 ) sin((n+ 1

2 )x)

sin2(x2 )

and

D′′
n(x) =

−(n2 + n) sin((n+ 1
2 )x) sin

2(x2 )

sin3(x2 )
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− (n+ 1
2 ) cos((n+ 1

2 )x) sin(
x
2 ) cos(

x
2 ) +

1
2 cos

2(x2 ) sin((n+ 1
2 )x)

sin3(x2 )
.

From (6) and according to elementary properties of sin(x) and cos(x), we
have

Fn(x) =
(n+ 1)2 sin((n+ 1

2 )x) sin
2(x2 )− (n2 + n) sin((n+ 1

2 )x) sin
2(x2 )

(n+ 1)2 sin3(x2 )

− (n+ 1
2 ) cos((n+ 1

2 )x) sin(
x
2 ) cos(

x
2 ) +

1
2 cos

2(x2 ) sin((n+ 1
2 )x)

(n+ 1)2 sin3(x2 )

=
(n+ 1) sin((n+ 1

2 )x) sin
2(x2 )

(n+ 1)2 sin3(x2 )
− (n+ 1

2 ) cos((n+ 1
2 )x) sin(

x
2 ) cos(

x
2 )

(n+ 1)2 sin3(x2 )

+
1
2 cos

2(x2 ) sin((n+ 1
2 )x)

(n+ 1)2 sin3(x2 )

=
−(n+ 1

2 ) sin(
x
2 ) cos((n+ 1

2 )x+ x
2 ) +

1
2 sin((n+ 1

2 )x)

(n+ 1)2 sin3(x2 )

=
−(n+ 1

2 ) sin(
x
2 ) cos((n+ 1)x) + 1

2 sin((n+ 1
2 )x)

(n+ 1)2 sin3(x2 )
,

which proves (b). Therefore, the proof is complete. �

Corollary 2.3. (a) |Fn(x)| ≤
5(2n+ 1)

6
.

(b) |Fn(x)| ≤
5π3

4(n+ 1)|x|3 (0 < |x| < π).

Proof. By (a) of Lemma 2.2,

|Fn(x)| ≤
∑

|k|≤n

(

1− k2

(n+ 1)2

)

= (2n+ 1)

(

1− n

3(n+ 1)

)

,

where the first inequality comes from
∑n

k=1 k
2 = n(n+1)(2n+1)

6 and the last
equality holds from the fact that 1− n

3(n+1) is decreasing. Hence, we prove (a).

Next, let 0 < |x| < π. We may assume 0 < x < π. By (b) of Lemma 2.2,

|Fn(x)| ≤
(n+ 1

2 )π
2

(n+ 1)2x2
+

π3

2(n+ 1)2x3

≤ π2

(n+ 1)x3

(

x+
π

2(n+ 1)

)

.

By substituting π, 1 for x, n, respectively, we have (b). Therefore, the proof is
complete. �
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A family of kernels {Gn(x)}∞n=1 on [−π, π] is said to be a family of good
kernels if it satisfies the following properties:

(i) For all n ≥ 1,
1

2π

∫ π

−π

Gn(x) dx = 1.

(ii) There exists M > 0 such that for all n ≥ 1,
∫ π

−π

|Gn(x)| dx ≤ M.

(iii) For every δ > 0,
∫

δ≤|x|≤π

|Gn(x)| dx → 0 as n → ∞.

Here note that Gn(x) may not be nonnegative. Properties (i), (ii) and (iii)
mean the normalizability, the uniform integrability and vanishment of tails in
the L1-limit, respectively.

As basic results of this paper, it is shown that {Fn(x)}∞n=1 is a family of
good kernels through the following lemmas.

Lemma 2.4. The family of {Fn(x)}∞n=1 is normalized.

Proof. It follows readily that

1

2π

∫ π

−π

Fn(x) dx =
1

2π

∫ π

−π





∑

|k|≤n

eikx − 1

(n+ 1)2

∑

|k|≤n

k2 eikx



 dx

=
∑

|k|≤n

1

2π

∫ π

−π

eikxdx− 1

(n+ 1)2

∑

|k|≤n

k2

2π

∫ π

−π

eikx dx

= 1. �

Lemma 2.5. The family of {Fn(x)}∞n=1 is uniformly integrable.

Proof. We begin by splitting the integral into two parts:
∫ π

−π

|Fn(x)| dx = 2

∫ 1

n

0

|Fn(x)| dx + 2

∫ π

1

n

|Fn(x)| dx ≡ 2I + 2II.

Estimate of I: From (a) of Corollary 2.3, we get

(8) I =

∫ 1

n

0

|Fn(x)| ≤
5(2n+ 1)

6n
≤ 5

2
.

Estimate of II: It follows from (b) of Lemma 2.2 that

Fn(x) =
−(n+ 1) sin(x2 ) cos(n+ 1)x+ 1

2 sin((n+ 1)x) cos(x2 )

(n+ 1)2 sin3(x2 )

=
− sin(x2 )

d
dx sin((n+ 1)x) + 1

2 sin((n+ 1)x) cos(x2 )

(n+ 1)2 sin3(x2 )
.
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Since (n+ 1)2 > n2 for all n ≥ 0, we get

|Fn(x)| ≤
∣

∣

∣

∣

∣

− sin(x2 )
d
dx sin((n+ 1)x) + 1

2 sin((n+ 1)x) cos(x2 )

n2 sin3(x2 )

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

d
dx sin((n+ 1)x)

n2 sin2(x2 )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

sin((n+ 1)x) cos(x2 )

2n2 sin3(x2 )

∣

∣

∣

∣

∣

≡ A+B.

Then

II ≤
∫ π

1/n

Adx+

∫ π

1/n

B dx ≡ III + IV.

Estimate of IV : It follows that

IV ≤ 1

n2

∫ π

1

n

| sin((n+ 1)x)|
sin3(x2 )

dx

≤ π3

n2

∫ π

1

n

1

x3
dx

=
π3

2

(

1− 1

π2n2

)

≤ π3

2
.

(9)

Estimate of III: We will estimate III by taking a partition of [1/n, π]. The
inequality, sin(x/2) ≥ x/π implies

III =
1

n2

(

∫ π

2(n+1)

1

n

+

n
∑

k=1

∫

(2k+1)π

2(n+1)

(2k−1)π

2(n+1)

+

∫ π

(2n+1)π

2(n+1)

)

| d
dx sin((n+ 1)x)|

sin2(x2 )
dx

≤ π2

n2

(

∫ π

2(n+1)

1

n

+

n
∑

k=1

∫
(2k+1)π

2(n+1)

(2k−1)π

2(n+1)

+

∫ π

(2n+1)π

2(n+1)

)

| d
dx sin((n+ 1)x)|

x2
dx

=
π2

n2
(III1 + III2 + III3) , say.

Estimate of III1: Since
d
dx sin((n+ 1)x) ≥ 0 on [ 1n ,

π
2(n+1) ], we have

III1 ≤
∫ π

2(n+1)

1

n

| d
dx sin((n+ 1)x)|

x2
dx

=

∫ π

2(n+1)

1

n

d
dx sin((n+ 1)x)

x2
dx.

(10)

Performing integration by parts, the last integral of (10) is equal to

4(n+ 1)2

π2
− n2 sin

n+ 1

n
+

∫ π

2(n+1)

1

n

2 sin((n+ 1)x)

x3
dx
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≤ 4(n+ 1)2

π2
− n2 sin

n+ 1

n
+

∫ π

2(n+1)

1

n

2

x3
dx

= n2 − n2 sin
n+ 1

n
.

Thus

(11) III1 ≤ n2.

Estimate of III2: From integration by parts, we get

III2 =

n
∑

k=1

(−1)k
∫

(2k+1)π

2(n+1)

(2k−1)π

2(n+1)

d
dx sin((n+ 1)x)

x2
dx

=

n
∑

k=1

(

4(n+ 1)2

(2k + 1)2π2
+

4(n+ 1)2

(2k − 1)2π2
+ (−1)k

∫

(2k+1)π

2(n+1)

(2k−1)π

2(n+1)

2 sin((n+ 1)x)

x3
dx

)

≤
n
∑

k=1

(

4(n+ 1)2

(2k + 1)2π2
+

4(n+ 1)2

(2k − 1)2π2
+

∫

(2k+1)π

2(n+1)

(2k−1)π

2(n+1)

2

x3
dx

)

=
8(n+ 1)2

π2

n
∑

k=1

1

(2k − 1)2

≤ 8(n+ 1)2

π2

(

1 +
1

2

n
∑

k=2

1

(k − 1)2

)

≤ 8(n+ 1)2

π2

(

1 +
π2

12

)

.

(12)

Estimate of III3: First, applying differentiation, we get

III3 ≤ (n+ 1)

∫ π

(2n+1)π

2(n+1)

1

x2
dx

=
n+ 1

(2n+ 1)π
.

(13)

From (11), (12) and (13),

III =
π2

n2
(III1 + III2 + III3)

≤ π2 +
8(n+ 1)2

n2

(

1 +
π2

12

)

+
(n+ 1)π

n2(2n+ 1)

≤ π2 + 32

(

1 +
π2

12

)

+
2π

3
.

(14)
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Finally, by summing up (8), (14) and (9), we see that 2I + 2II is uniformly
bounded:

(15) 2I + 2III + 2IV ≤ π3 +
22

3
π2 +

4

3
π + 69.

Hence, we prove that Fn(x) satisfies (ii) of properties of good kernels. There-
fore, the proof is complete. �

Lemma 2.6. The tail of Fn vanishes in L1 as n → ∞.

Proof. Let 0 < δ < π. By (b) of Corollary 2.3,

(16)

∫ π

δ

|Fn(x)| dx ≤ 5π3(π − δ)

4(n+ 1)δ3
,

consequently, (16) vanishes as n → ∞. Therefore, the proof is complete. �

3. Pointwise convergence of σ̃n(f, x)

The importance of good kernels is highlighted by their use in connection
with convolutions. More precisely, the convolutions of a continuous function
and a family of good kernels produce a continuous function as their limit.

We can now prove the pointwise convergence of σ̃n(f, x).

Theorem 3.1. Let f ∈ L1. If the limits f(a+ 0) and f(a− 0) exist, then

lim
n→∞

σ̃n(f, a) =
f(a+) + f(a−)

2
.

In particular, if f is continuous in a closed interval I ⊂ [−π, π], then the

convergence is uniform over I.

Proof. We may assume that f(a) = (f(a + 0) + f(a − 0))/2. On account of
Lemma 2.4 and the fact that Fn(x) is even, we have

σ̃n(f, a)− f(a) =
1

π

∫ π

0

(

f(a+ x) + f(a− x)

2
− f(a)

)

Fn(x) dx.

For 0 < η < π, we see that

|σ̃n(f, a)− f(a)| ≤ 1

π

(
∫ η

0

+

∫ π

η

) ∣

∣

∣

∣

f(a+ x) + f(a− x)

2
− f(a)

∣

∣

∣

∣

|Fn(x)| dx

= A+B, say.

(17)

Estimate of A: Put C = maxn ‖Fn‖1. Then 0 < C < ∞ by Lemma 2.5. By
continuity, for given ǫ > 0, there exists δ > 0 such that

∣

∣

∣

∣

f(a+ x) + f(a− x)

2
− f(a)

∣

∣

∣

∣

<
ǫ

C

provided 0 ≤ x < δ. We set η = δ in (17) and observe that

(18) |A| ≤ ǫ

C

1

π

∫ δ

0

|Fn(x)| dx ≤ ǫ.
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To bound B, we note that

max
δ<x<π

|Fn(x)| ≤
5π3

4(n+ 1)δ3

by (b) of Corollary 2.3. Thus

(19) |B| ≤ 5π3

4(n+ 1)δ3
(

2‖f‖1 + |f(a)|
)

,

where L1-norm is defined as the normalized integral. Hence, (19) vanishes as
n → ∞. This completes the first assertion.

If now f is continuous in a closed interval of [−π, π], then the uniform
convergence follows directly from (19).

Therefore, the proof is complete. �

Corollary 3.2. Let f be an integrable function on [−π, π]. Then

lim
n→∞

(Fn ∗ f)(x) = f(x)

whenever f is continuous at x. If f is continuous everywhere, then the above

limit is uniform.

4. Norm convergences

We start this section by comparing σ̃n(f, x) with σn(f, x) in L2-norm, which
are corresponding to the Fourier series of f , where L2 = L2([−π, π]).

Theorem 4.1. Let f ∈ L2. Then

(20) ‖σn(f)‖2 ≤ ‖σ̃n(f)‖2.

Proof. Let f ∼∑k cke
ikx and fix n. By Parseval’s identity we have

‖σn(f)‖22 =
∑

|k|≤n

|ck|2
(

1− |k|
n+ 1

)2

≤
∑

|k|≤n

|ck|2
(

1− k2

(n+ 1)2

)2

= ‖σ̃n(f)‖22,

where the second inequality holds since k2

(n+1)2 ≤ |k|
n+1 for every k (|k| ≤ n).

Therefore, the proof is complete. �

Let n, m be positive integers. From [17], the Cesàro (C,m)-mean σm
n (f, x)

corresponding to the Fourier series of f is derived as

(21) σm
n (f, x) =

∑

|k|≤n

m
∏

ℓ=1

(

1− |k|
n+ ℓ

)

cke
ikx.
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When m = 1, σ1
n(f, x) = σn(f, x). The identity (21) is announced with real

numbers m in [17].

Corollary 4.2. Let f ∈ L2. Then

‖σm′

n (f)‖2 ≤ ‖σm
n (f)‖2 ≤ ‖σ̃n(f)‖2 ≤ ‖sn(f)‖2 (m′ ≥ m ≥ 1).

Proof. Let 1 ≤ m ≤ m′. The first inequality follows readily. Indeed,

m
∏

ℓ=1

(

1− |k|
n+ ℓ

)

≥
m′

∏

ℓ=1

(

1− |k|
n+ ℓ

)

and apply Parseval’s identity to L2-norms. The first inequality and Theorem
4.1 yield the second inequality. The last inequality is also derived by

(

1− k2

(n+ 1)2

)

≤ 1 (|k| ≤ n)

and by Parseval’s identity. Therefore, the proof is complete. �

By Hölder’s inequality and by Theorem 4.1, we conclude the next result.

Corollary 4.3. Let f ∈ L1 ∩ L2. Then

‖σn(f)‖1 ≤ ‖σ̃n(f)‖2.
We will show Lp-norm convergences for σ̃n(f, x), where 1 ≤ p < ∞, where

Lp = Lp([−π, π]).

Theorem 4.4. Let 1 ≤ p < ∞. Then for each f ∈ Lp,

‖σ̃n(f)− f‖p → 0 as n → ∞.

Proof. By the property (i) of the good kernels,

σ̃n(f, x) − f(x) =
1

2π

∫ π

−π

(

f(x− y)− f(x)
)

Fn(y) dy.

Let 0 < η < π. By Minkowski’s inequality for integrals,

‖σ̃n(f)− f‖p ≤ 1

2π

∫ π

−π

‖f(· − y)− f‖p|Fn(y)| dy

=
1

2π

(

∫

|y|<η

+

∫

η≤|y|≤π

)

‖f(· − y)− f‖p|Fn(y)| dy

= I + II,

say.
Let C = maxn ‖Fn‖1. By the property (ii) of the good kernels, 0 < C <

∞. From the Lp-continuity, for given ǫ > 0, there exists δ > 0 such that
‖f(· − y)− f‖p < ǫ

C for every y (|y| < δ). Thus

I ≤ ǫ

C

∫ π

−π

|FN (y)| dy
2π

≤ ǫ.
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Next, II vanishes as n → ∞. Indeed, by the property (ii) of the good
kernels,

II ≤ 1

2π

∫

δ≤|y|≤π

‖f(· − y)− f‖p|Fn(y)| dy

≤ 2‖f‖p
∫

δ≤|y|≤π

|Fn(y)|
dy

2π
→ 0

as n → ∞. Therefore, the proof is complete. �

We now state and prove the convergence of a weighted Fouier series is faster
than that of the Cesàro mean in L2.

Theorem 4.5. Let f ∈ L2. Then

‖f − σ̃n(f)‖2 ≤ ‖f − σn(f)‖2
for any n.

Proof. Let f ∈ L2. We may assume that f =
∑

k cke
ikx in L2, where f ∼

∑

k cke
ikx and also note {ck}k∈Z ∈ ℓ2(Z). By Parseval’s identity,

‖f − σ̃n(f)‖22 =
∑

|k|≤n

k4

(n+ 1)4
|ck|2 +

∑

|k|>n

|ck|2

≤
∑

|k|≤n

k2

(n+ 1)2
|ck|2 +

∑

|k|>n

|ck|2

= ‖f − σn(f)‖22.
Therefore, the proof is complete. �

The next conclusion follows from the orthogonality of {eikx}k∈Z and from
Theorem 4.5.

Corollary 4.6. Let f ∈ L2. Then

‖f − sn(f)‖2 ≤ ‖f − σ̃n(f)‖2 ≤ ‖f − σn(f)‖2
for any n.

Remark. In Theorem 4.5, one may conceive that

(22)
‖f − σn(f)‖2
‖f − σ̃n(f)‖2

is bounded in L2. However, we show that there exists f ∈ L2 such that (22)
approaches ∞ as n → ∞, which is precisely f(x) =

∑

k e
−|k|eikx. Indeed,

‖f − σn(f)‖22
‖f − σ̃n(f)‖22

= (n+ 1)2
∑

|k|≤n k
2e−2|k| + 2(n+1)2

e2−1 e−2n

∑

|k|≤n k
4e−2|k| + 2(n+1)4

e2−1 e−2n

= (n+ 1)2A, say.
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By choosing n0 such that 2(n+1)4

e2−1 e−2n ≤ 1 for n ≥ n0, we have

A ≥
∑

|k|≤n k
2e−2|k| + 2(n+1)2

e2−1 e−2n

∑

|k|≤n k
4e−2|k| + 1

≥
2
∫ n+1

1
t2e−2t dt+ 2(n+1)2

e2−1 e−2n

2e−2 + 2
∫∞

2 t4e−2t dt+ 1

(23)

for any n ≥ n0. Now take the limit as n → ∞ on the numerator of the last
term of (23). It follows that

A ≥ 2
∫∞

1 t2e−2t dt

2e−2 + 2
∫∞

2 t4e−2t dt+ 1
=

5
2e

−2

2e−2 + 103
2 e−4 + 1

,

which is a positive constant. Therefore, (n+ 1)2A → ∞ as n → ∞.

5. A characterization of Fourier series

Fejér’s characterization theorem asserts that a necessary and sufficient con-
dition for the trigonometric series

(24)

∞
∑

k=−∞

cke
ikx

to be Fourier series of an f ∈ Lp (1 < p ≤ ∞) is its Ceàro means σn(x) be
bounded in Lp, where

σn(x) =
∑

|k|≤n

(

1− |k|
n+ 1

)

cke
ikx.

In this section, we prove that σn(x) is bounded in Lp if and only if σ̃n(x) does,
where

σ̃n(x) =
∑

|k|≤n

(

1− k2

(n+ 1)2

)

cke
ikx.

Theorem 5.1. Let 1 < p ≤ ∞. Then
∑

cne
inx is the Fourier series of an Lp-

function f if and only if there exists C < ∞ such that

‖σ̃n‖p ≤ C.

In this case ‖f‖p ≤ C.

Proof. By Lemma 2.5 and Corollary 2.3(a), we have

‖σ̃n(f)‖p ≤ 1

2π

∫ π

−π

‖f(.− t)‖p|Fn(t)|dt

≤ ‖f‖p
1

2π

∫ π

−π

5(2n+ 1)

6
dt

=
5(2n+ 1)

6
‖f‖p.
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Thus necessity holds.
By Weak compactness in Lp (1 < p ≤ ∞), there is a sequence nk → ∞ and

f ∈ Lp such that σ̃nk
→ f weakly as nk → ∞. Since e−int ∈ L∞, we have

lim
nk→∞

1

2π

∫ π

−π

σ̃nk
(t)e−intdt = lim

nk→∞

(

1− n2

(nk + 1)2

)

cn

= cn

=
1

2π

∫ π

−π

f(t)e−intdt

= cn(f). �

Remark. Theorem does not hold for p = 1: Let cn = 1 for all n. It follows
that ‖σ̃n‖1 = ‖Fn‖1 is uniformly bounded by Lemma 2.5. On the other hand,
∑

einx is not a Fourier series of any L1-function, since it does not satisfy
Riemann Lebesgue Lemma.

For a finite measure µ on [−π, π], we define

cn(µ) =
1

2π

∫ π

−π

e−intdµ(t) for all n.

If
∑

cne
int is the Fourier series of µ, then it is clear that

(25) σ̃n(µ, x) =
1

2π

∫ π

−π

Fn(x− t)dµ(t)

and there exists C such that

(26) ‖σ̃n(µ)‖1 ≤ C

2π

∫ π

−π

|d(µ(t))|.

The quality (25) holds, since we have

σ̃n(µ, x) =
∑

|k|≤n

(

1− k2

(n+ 1)2

)

ck(µ)e
ikx

=
∑

|k|≤n

(

1− k2

(n+ 1)2

)

1

2π

∫ π

−π

e−iktdµ(t)eikx

=
1

2π

∫ π

−π

∑

|k|≤n

(

1− k2

(n+ 1)2

)

eik(x−t)dµ(t)

=
1

2π

∫ π

−π

F (x− t)dµ(t).

From (25), it follows that

‖σ̃n(µ)‖1 =
1

2π

∫ π

−π

|σ̃n(µ, x)|d(x)

=
1

2π

∫ π

−π

∣

∣

∣

∣

1

2π

∫ π

−π

F (x− t)dµ(t)

∣

∣

∣

∣

d(x)
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≤ 1

2π

∫ π

−π

1

2π

∫ π

−π

|F (x− t)||dµ(t)|dx

≤ C

2π

∫ π

−π

|d(µ(t))|.

Thus the inequality (26) holds.

Theorem 5.2.
∑

cne
inx is the Fourier series of a finite measure µ if and only

if there exists C < ∞ such that

‖σ̃n‖1 ≤ C.

In this case
∫ π

−π |dµ| ≤ C.

Proof. From (26), it is enough to show the sufficiency. Let hn(x) =
∫ x

−π
σ̃n(t)dt.

The function hn is uniformly bounded variation over [−π, π]. Since hn(−π) =
0 for each n, {|hn|} can not diverge uniformly to ∞ in [−π, π]. By Helly’s
selection Lemma, there exist a sequence nk → ∞ and h of bounded variation
over [−π, π] such that

lim
nk→∞

∫ x

−π

σ̃nk
(t)dt = h(x), x ∈ [−π, π].

Fix n. For nk > |n| we have
(

1− n2

(nk + 1)2

)

cn =
1

2π

∫ π

−π

σ̃nk
(t)e−intdt

=
1

2π
hnk

(π) +
in

2π

∫ π

−π

hnk
(t)eintdt.

By letting nk → ∞, we set

cn =
1

2π
h(π) +

in

2π

∫ π

−π

h(t)e−intdt.

Therefore dµ = dh. �

6. Numerical experiments

In the last section, we compare σ̃n(f, x) with σn(f, x) and sn(f, x) in numer-
ical simulation. The following two typical examples are considered on [−π, π],
which are given by

f(x) =

{

1 if x ≥ 0

−1 otherwise,

g(x) =

{

1− 1
πx if x ≥ 0

−1− 1
πx otherwise.

Let us note that f has simple discontinuities at 0, at the end-points, and that
g is discontinuous only at 0 as a periodic function on R.
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−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Figure 1. When n = 20, the blue, red, black colored lines
denote s20(f, x), σ20(f, x), σ̃20(f, x), respectively.

Even though L2-norm difference ‖f − sn(f)‖2 is the smallest since {einx}
are orthonormal system, ‖f − σ̃n(f)‖2 is much smaller than ‖f −σn(f)‖2. (See
Table 1 and Table 2). In comparing pointwise convergences, ‖f− σ̃n(f)‖2 is the
smallest, particularly near the deleted neighborhood of discontinuities. (Refer
to Figures 1, 2, 3 and 4.)

0 0.5 1 1.5

0.7

0.8

0.9

1

1.1

1.2

Figure 2. Local picture of Figure 1. The blue, red, black
colored lines denote s20(f, x), σ20(f, x), σ̃20(f, x), respectively.

At the end-points g is continuous as a periodic function in R. From Figures
3 and 4 show that |g(x) − σ̃n(g, x)| is the smallest in the neighborhood of π
and −π.
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Table 1. The estimated results are rounded off to 4 decimal places.

n = 10 n = 20 n = 30 n = 40

‖f − sn(f)‖2 0.2538 0.1272 0.0848 0.0636
‖f − σn(f)‖2 0.4642 0.2427 0.1643 0.1242
‖f − σ̃n(f)‖2 0.3112 0.1620 0.1096 0.0828

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

Figure 3. When n = 20, the blue, red, black colored lines
denote s20(g, x), σ20(g, x), σ̃20(g, x), respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 4. Local picture of Figure 3. The blue, red, black
colored lines denote s20(g, x), σ20(g, x), σ̃20(g, x), respectively.

Finally, we compare three kernels Dn(x), Kn(x), Fn(x) in Figures 5 and 6
when n = 10. Let us note that Fn(x) is not a positive kernel.
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Table 2. The estimated results are rounded off to 4 decimal places.

n = 10 n = 20 n = 30 n = 40

‖g − sn(g)‖2 0.1211 0.0620 0.0417 0.0314
‖g − σn(g)‖2 0.2263 0.1198 0.0814 0.0617
‖g − σ̃n(g)‖2 0.1546 0.0808 0.0547 0.0414

−3 −2 −1 0 1 2 3

−2

0

2

4

6

8

10

Figure 5. When n = 10, the blue, red, black colored lines
denote D10(x), K10(x), F10(x), respectively.

0 0.5 1 1.5 2 2.5 3

−2

−1

0

1

2

3

4

Figure 6. Local picture of Figure 5. The blue, red, black
colored lines denote D10(x), K10(x), F10(x), respectively.
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[13] J. Wade, Cesàro summability of Fourier orthogonal expansions on the cylinder, J. Math.
Anal. Appl. 402 (2013), no. 2, 446–452.
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