DOI QR코드

DOI QR Code

A WEIGHTED FOURIER SERIES WITH SIGNED GOOD KERNELS

  • Chan, Sony (Department of Mathematics Sogang University) ;
  • Rim, Kyung Soo (Department of Mathematics Sogang University)
  • Received : 2016.04.27
  • Published : 2017.05.31

Abstract

It is natural to try to find a kernel such that its convolution of integrable functions converges faster than that of the $Fej{\acute{e}}r$ kernel. In this paper, we introduce a weighted Fourier partial sums which are written as the convolution of signed good kernels and prove that the weighted Fourier partial sum converges in $L^2$ much faster than that of the $Ces{\grave{a}}ro$ means. In addition, we present two numerical experiments.

Keywords

References

  1. J. M. Ash, Triangular Dirichlet kernels and growth of Lp Lebesgue constants, J. Fourier Anal. Appl. 16 (2010), no. 6, 1053-1069. https://doi.org/10.1007/s00041-009-9115-8
  2. H. Bor and D. Yu, On the generalized absolute Cesaro summability, Bull. Math. Anal. Appl. 2 (2010), no. 4, 83-86.
  3. D. Borwein and D. C. Russell, On Riesz and generalised Cesaro summability of arbitrary positive order, Math. Zeitschr. 99 (1967), 171-177. https://doi.org/10.1007/BF01123746
  4. K. K. Chen, On the absolute Cesaro summability of negative order for a Fourier series at a given point, Amer. J. Math. 66 (1944), no. 2, 299-312. https://doi.org/10.2307/2371989
  5. L. Fejer, Untersuchungen uber Fouriersche Reihen, Math. Annalen 58 (1904), 51-69.
  6. M. Kiyohara, On the local property of the absolute summability $\left|C,{\alpha}\right|$ for Fourier series,J. Math. Soc. Japan 10 (1958), no. 1, 55-63. https://doi.org/10.2969/jmsj/01010055
  7. M. Pavlovic, On Cesaro means in Hardy spaces, Publ. Inst. Math. (Beograd) (N.S.) 60(74) (1996), 81-87.
  8. J. J. Price, Orthonormal sets with non-negative Dirichlet kernels, Trans. Amer. Math. Soc. 95 (1960), no. 2, 256-262. https://doi.org/10.1090/S0002-9947-1960-0111968-4
  9. J. J. Price, Orthonormal sets with non-negative Dirichlet kernels. II, Trans. Amer. Math. Soc. 100 (1961), no. 1, 153-161. https://doi.org/10.1090/S0002-9947-1961-0126124-4
  10. W. A. Rosenkrantz, Probability and the (C, r) summability of Fourier series, Trans. Amer. Math. Soc. 119 (1965), no. 2, 310-332. https://doi.org/10.1090/S0002-9947-1965-0182047-X
  11. G. Travaglini, Fejer kernels for Fourier series on Tn and on compact lie groups, Math. Z. 216 (1994), no. 2, 265-281. https://doi.org/10.1007/BF02572322
  12. T. Tsuchikura, Absolute Cesaro summability of orthogonal series II, Tohoku Math. J. (2) 5 (1954), no. 3, 302-312. https://doi.org/10.2748/tmj/1178245277
  13. J. Wade, Cesaro summability of Fourier orthogonal expansions on the cylinder, J. Math. Anal. Appl. 402 (2013), no. 2, 446-452. https://doi.org/10.1016/j.jmaa.2013.01.047
  14. F. Weisz, Cesaro summability of multi-dimensional trigonometric-Fourier series, J. Math. Anal. Appl. 204 (1996), no. 2, 419-431. https://doi.org/10.1006/jmaa.1996.0445
  15. F. Weisz, Cesaro-summability of higher-dimensional Fourier series, Ann. Univ. Sci. Budapest. Sect. Comput. 37 (2012), 47-64.
  16. K. Yano, A note on absolute Cesaro summability of Fourier series, Tohoku Math. J. (2) 12 (1960), no. 3, 293-300. https://doi.org/10.2748/tmj/1178244442
  17. A. Zygmund, Trigonometric Series, 3rd Ed., Camabridge University Press, 2002.