This is a survey on American options. An American option allows its owner the privilege of early exercise, whereas a European option can be exercised only at expiration. Because of this early exercise privilege American option pricing involves an optimal stopping problem; the price of an American option is given as a free boundary value problem associated with a Black-Scholes type partial differential equation. Up until now there is no simple closed-form solution to the problem, but there have been a variety of approaches which contribute to the understanding of the properties of the price and the early exercise boundary. These approaches typically provide numerical or approximate analytic methods to find the price and the boundary. Topics included in this survey are early approaches(trees, finite difference schemes, and quasi-analytic methods), an analytic method of lines and randomization, a homotopy method, analytic approximation of early exercise boundaries, Monte Carlo methods, and relatively recent topics such as model uncertainty, backward stochastic differential equations, and real options. We also provide open problems whose answers are expected to contribute to American option pricing.
Computing the interior spectrum of large sparse generalized eigenvalue problems $Ax\;=\;{\lambda}Bx$, where A and b are large sparse and SPD(Symmetric Positive Definite), is often required in areas such as structural mechanics and quantum chemistry, to name a few. Recently, CG-type methods have been found useful and hence, very amenable to parallel computation for very large problems. Also, as in the case of linear systems proper choice of preconditioning is known to accelerate the rate of convergence. After the smallest eigenpair is found we use the orthogonal deflation technique to find the next m-1 eigenvalues, which is also suitable for parallelization. This offers advantages over Jacobi-Davidson methods with partial shifts, which requires re-computation of preconditioner matrx with new shifts. We consider as preconditioners Incomplete LU(ILU)(0) in two variants, ever-relaxation(SOR), and Point-symmetric SOR(SSOR). We set m to be 5. We conducted our experiments on matrices from discretizations of partial differential equations by finite difference method. The generated matrices has dimensions up to 4 million and total number of processors are 32. MPI(Message Passing Interface) library was used for interprocessor communications. Our results show that in general the Multi-Color ILU(0) gives the best performance.
본 연구에서는 미분 가능한 함수가 Taylor 전개로 표현되고 그 계수들은 주어진 함수와 미분에 대한 근사값을 제공할 수 있다는 점에 착안하여 m차 Taylor 다항식을 구성하고 이동최소제곱법을 이용하여 그 계수들을 구했다. 계산된 근사함수와 미분을 콜로케이션 개념을 바탕으로 균열 문제를 포함하는 고체문제에 대한 지배 미분방정식에 적용하여 차분식 형태의 이산화된 계방정식을 구성하였다. 본 연구의 해석기법은 격자망(grid)에 의존적이고 근사함수가 없는 유한차분법과 형상함수의 미분과 약형식의 적분산정, 필수경계조건 처리가 어려운 Galerkin법 기반의 무요소법의 단점을 효과적으로 극복한 새로운 수치기법이다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제5권2호
/
pp.63-69
/
2001
In this study, we shall be concerned with computing in parallel a few of the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue problem, $Ax={\lambda}Bx$, where A is symmetric, and B is symmetric positive definite. Both A and B are large and sparse. Recently iterative algorithms based on the optimization of the Rayleigh quotient have been developed, and CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for small extreme eigenvalues. As in the case of a system of linear equations, successful application of the CG scheme to eigenproblems depends also upon the preconditioning techniques. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. The idea underlying the present work is a parallel computation of the Multi-Color Block SSOR preconditioning for the CG optimization of the Rayleigh quotient together with deflation techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n, where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message Passing Interface) library was adopted for the interprocessor communications. The test problems were drawn from the discretizations of partial differential equations by finite difference methods.
자유수면을 항주하는 선박에 의하여 발생되는 비선형 조파현상을 해석하기 위한 수치해석법을 개발하였다. 유동은 비점성, 비압축성으로 가정하고 선체 및 자유수면 형상과 일치하는 좌표계의 생성을 위하여 타원형 편미분방정식을 수치해석하여 물체적합 좌표계를 생성하였으며 변환된 정규격자 물체적합 좌표계에 대한 Euler방정식을 유한차분법(Finite Difference Method)을 이용하여 계산하였다. 수치해석을 위하여 시간에 대한 미분항은 전진차분, 공간에 대한 미분항은 중심차분법으로 이산화하였고 대류항에는 수치계산의 안정을 위해 인위적인 소산(dissipation)항을 첨가하였다. 자유수면의 형상은 매 시간 단계마다 자유수면 경계조건들을 만족하도록 다시 계산되었고 격자점들은 자유수면형상의 변화에 적합하게 다시 생성되도록 하였으며 압력에 대한 Poisson방정식은 반복연산법에 의하여 풀고 그 결과를 이용하여 속도를 외삽하였다. 개발된 수치해석법의 검증을 위해 수식선형인 Wigley 모형에 대한 계산을 Fn=0.250-0.408에 대하여 수행하고, 그 결과를 실험 결과와 비교하여 잘 일치함을 보였다.
Journal of Advanced Marine Engineering and Technology
/
제40권4호
/
pp.264-269
/
2016
본 논문은 단열층을 가지는 솔라폰드의 온도특성을 알아보기 위한 기초 연구이다. 또한, 기존의 단열층을 가지지 않는 경우의 솔라폰드의 온도특성과 비교하였다. 수치해석법은 유한차분법(Finite-Difference Method)를 이용하였으며, 2차원 비정상의 상태를 가정하여 계산하였다. 수치해석을 통해 다음과 같은 결과를 얻었다. 1) 솔라 폰드의 깊이가 깊어지면 폰드의 하부까지 도달하는 일사량이 줄어들기 때문에 온도 상승 효과는 발생하지 않는 것을 확인했다. 2) 동절기에는 토양의 온도가 솔라 폰드 내 물의 온도보다 상대적으로 높아 토양에서 폰드 내로 열이 전달되는 것을 확인할 수 있었다. 3) 단열층을 가지는 솔라폰드의 경우, 태양의 의존율은 83.3%, 보일러의 의존율은 16.7%로 자연에너지의 의존도가 높은 것을 확인할 수 있었다.
Cellular Automata(CA)s are used as a simple mathematical model to investigate self-organization in statistical mechanics, which are originally introduced by von Neumann and S. Ulam at the end of the 1940s. CAs provide a framework for a large class of discrete models with homogeneous interactions, which are characterized by the following fundamental properties: 1) CAs are dynamical systems in which space and time are discrete. 2) The systems consist of a regular grid of cells. 3) Each cell is characterized by a state taken from a finite set of states and updated synchronously in discrete time steps according to a local, identical interaction rule. 4) The state of a cell is determined by the previous states of a surrounding neighborhood of cells. A cellular automaton has been attracted wide interest in modeling physical phenomena, which are described generally, partial differential equations such as diffusion and wave propagation. This paper describes one and two-dimensional analysis of wave propagation phenomena modeled by CA, where the local interaction rules were derived referring to the Lattice Gas Model reported by Chen et al., and also including finite difference scheme. Modeling processes by using CA are discussed and the simulation results of wave propagation with one wave source are compared with that by finite difference method.
Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
Coupled systems mechanics
/
제8권2호
/
pp.129-146
/
2019
The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.
본 연구는 다양한 적층 배열을 갖는 비등방성을 보이는 첨단 복합 신소재 판구조물의 유한 차분 비선형 해석을 수행한다. 복잡한 편미분 방정식으로 표현되는 역학문제들을 수치해석 하는 경우 본 연구에서 사용한 유한차분법은 유한요소법에 비하여 체눈 생성 및 수치적분 과정을 피할 수 장점을 갖는다. 유한차분법을 이용한 많은 연구들은 단지 에너지 방법을 사용한 고정 혹은 단순 경계조건에 대하여 수행되었다. 그러나 이러한 접근방법은 자유경계에 대하여 불가피하게 발생하는 가상점 문제를 충분히 만족시킬 수 없다. 그러므로 본 연구에서는 임의의 경계조건을 갖는 비등방성 복합 적층한의 비선형 거동 문제를 보다 효과적으로 해결할 수 있는 유한차분식을 정식화 하였다. 적층 배열 변화를 비롯한 다양한 매개변수에 대하여 본 연구에서 제안한 접근방법을 사용하여 적층판의 복잡한 비선형 거동을 분석하였다.
빌딩, 자동차, 선박, 항공기 등에서의 곡선보 사용 증가가 이러한 구조물의 동적거동해석에 필요한 정확한 해법 발전에 괄목할 만한 기여를 해왔다. 탄성곡선 보의 안정성거동은 많은 연구자들의 한 과제분야였다. 전통적으로 미분방정식의 해법은 유한치분법이나 유한요소법으로 해결해왔다. 이러한 방법들은 복잡한 기하학적 구조 및 하중에 따른 격자점의 증가로 많은 컴퓨팅시간을 요구한다. 편미분방정식의 해를 구하기 위한 효율적인 방법 중의 하나는 미분구적법이다. 복잡한 기하학적 구조 및 하중 은 컴퓨터 용량을 과도하게 사용할 뿐만 아니라, 복합알고리즘 프로그램의 어려움을 극복하기위하여 미분구적법(DQM)이 많은 분야에 적용되어왔다. DQM을 이용하여 곡선 보의 아크 축 신장을 고려한 내 평면 좌굴을 등분포 하중 하에서 해석하였다. 다양한 매개변수 비, 경계조건, 그리고 열림 각에 따른 임계하중을 계산하였다. DQM 결과는 활용 가능한 다른 엄밀해와 비교하였다. DQM은 적은 격자점을 사용하고도 엄밀해 결과와 일치함을 보여주었다 (0.3% 미만). 다양한 변경에 따른 새로운 결과가 또한 제시 되였고, 그 결과는 곡선 보의 좌굴거동에 중요한 역할을 보여주었고, 다른 수치해석결과 혹은 실험결과비교에 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.