• 제목/요약/키워드: partial differential equations

검색결과 518건 처리시간 0.025초

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

삼각형 메쉬 상에서의 미분 연산자와 그 응용 (Differential Operators on a Triangular Mesh and Their Applications)

  • 백승엽;감동욱;이건우
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.44-54
    • /
    • 2015
  • Solving partial differential equations (PDEs) on a manifold setting is frequently faced problem in CAD, CAM and CAE. However, unlikely to a regular grid, solutions for those problems on a triangular mesh are not available in general, as there are no well-established intrinsic differential operators. Considering that a triangular mesh is a powerful tool for representing a highly-complicated geometry, this problem must be tackled for improving the capabilities of many geometry processing algorithms. In this paper, we introduce mathematically well-defined differential operators on a triangular mesh setup, and show some examples of their applications. Through this, it is expected that many CAD/CAM/CAE application will be benefited, as it provides a mathematically rigorous solution for a PDE problem which was not available before.

NUMERICAL RESULTS ON ALTERNATING DIRECTION SHOOTING METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

  • Kim, Do-Hyun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권1호
    • /
    • pp.57-72
    • /
    • 2008
  • This paper is concerned with the numerical solutions to steady state nonlinear elliptical partial differential equations (PDE) of the form $u_{xx}+u_{yy}+Du_{x}+Eu_{y}+Fu=G$, where D, E, F are functions of x, y, u, $u_{x}$, and $u_{y}$, and G is a function of x and y. Dirichlet boundary conditions in a rectangular region are considered. We propose alternating direction shooting method for solving such nonlinear PDE. Numerical results show that the alternating direction shooting method performed better than the commonly used linearized iterative method.

  • PDF

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

ITERATIVE ALGORITHMS AND DOMAIN DECOMPOSITION METHODS IN PARTIAL DIFFERENTIAL EQUATIONS

  • Lee, Jun Yull
    • Korean Journal of Mathematics
    • /
    • 제13권1호
    • /
    • pp.113-122
    • /
    • 2005
  • We consider the iterative schemes for the large sparse linear system to solve partial differential equations. Using spectral radius of iteration matrices, the optimal relaxation parameters and good parameters can be obtained. With those parameters we compare the effectiveness of the SOR and SSOR algorithms. Applying Crank-Nicolson approximation, we observe the error distribution according to domain decomposition. The number of processors due to domain decomposition affects time and error. Numerical experiments show that effectiveness of SOR and SSOR can be reversed as time size varies, which is not the usual case. Finally, these phenomena suggest conjectures about equilibrium time grid for SOR and SSOR.

  • PDF

THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD

  • Taghizadeh, N.;Mirzazadeh, M.
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.631-635
    • /
    • 2008
  • In this paper we discuss on the formal linearization and exact solution of Klein-Gordon's equation (1) $u_{tt}-au_{xx}+bu-cu^3=0 a,b,c{\in}R^+$ So that we know an efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced.

RANDOM ATTRACTOR FOR STOCHASTIC PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

  • You, Honglian;Yuan, Rong
    • 대한수학회보
    • /
    • 제51권5호
    • /
    • pp.1469-1484
    • /
    • 2014
  • In this paper we are concerned with a class of stochastic partial functional differential equations with infinite delay. Supposing that the linear part is a Hille-Yosida operator but not necessarily densely defined and employing the integrated semigroup and random dynamics theory, we present some appropriate conditions to guarantee the existence of a random attractor.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

ON MEROMORPHIC SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS OF FIRST ORDER IN SEVERAL COMPLEX VARIABLES

  • Qibin Cheng;Yezhou Li;Zhixue Liu
    • 대한수학회보
    • /
    • 제60권2호
    • /
    • pp.425-441
    • /
    • 2023
  • This paper is concerned with the value distribution for meromorphic solutions f of a class of nonlinear partial differential-difference equation of first order with small coefficients. We show that such solutions f are uniquely determined by the poles of f and the zeros of f - c, f - d (counting multiplicities) for two distinct small functions c, d.

Response of forced Euler-Bernoulli beams using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.95-119
    • /
    • 2012
  • In this paper, forced vibration differential equations of motion of Euler-Bernoulli beams with different boundary conditions and dynamic loads are solved using differential transform method (DTM), analytical solutions. Then, the modal deflections of these beams are obtained. The calculated modal deflections using DTM are represented in tables and depicted in graphs and compared with the results of the analytical solutions where a very good agreement is observed.