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RANDOM ATTRACTOR FOR STOCHASTIC PARTIAL

FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

INFINITE DELAY

Honglian You and Rong Yuan

Abstract. In this paper we are concerned with a class of stochastic
partial functional differential equations with infinite delay. Supposing
that the linear part is a Hille-Yosida operator but not necessarily densely
defined and employing the integrated semigroup and random dynamics
theory, we present some appropriate conditions to guarantee the existence
of a random attractor.

1. Introduction

The purpose of this paper is to investigate the asymptotic behavior of solu-
tions to the following stochastic partial functional differential equation

(1.1) dx(t) = Ax(t)dt + f(xt)dt+ σdW (t),

where A is a linear operator defined on E (a separable Banach space with the
norm ‖ · ‖), f is a nonlinear operator satisfying the global Lipschitz condition,
σ ∈ D(A) and W (t) is a real-valued two-sided Winer process.

In order to capture the essential dynamics of such stochastic systems, the
concept of random attractor was introduced in [7], then generalized in [6], as
an extension to stochastic systems of the theory of attractors for deterministic
system [13]. Many works are devoted to the existence of random attractors
of, for example, stochastic PDEs on unbounded domain [3, 21, 22, 23] with
applications to such as stochastic reaction-diffusion equation and Navier-Stocks
equation, quasilinear stochastic PDEs [11, 12] with applications to stochastic
porous media equation, quasi-continuous random dynamical system [15] and
stochastic damped sine-Gordon equation [19]. We also mention some studies
on the determined case, see for example [5, 16].
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Notice that, in the works mentioned above, the linear part is a densely
defined operator. Little is known for the non-densely defined case. In fact, op-
erators with non-dense domain occur in many situations due to restrictions on
the space where the equations are considered. For example, periodic continuous
functions and Hölder continuous functions are not dense in the space of con-
tinuous functions, see more examples in [18]. Besides, the boundary conditions
also give rise to operators with non-dense domains, e.g., the age-structured
problem we give in the last section of the present paper.

Motivated by the previous works on the random attractor of the explicit
partial differential equations, in this paper, we consider the existence of random
attractors for a more general form as that in Eq. (1.1), where the linear operator
A : D(A) ⊂ E → E is not necessarily densely defined but satisfies the following
Hille-Yosida condition:

(H1) there exist two constants M ≥ 1 and ω ∈ R such that (ω,+∞) ⊂ ρ(A)
and

‖(λI −A)−n‖L ≤
M

(λ− ω)n
, λ > ω,

where ρ(A) is the resolvent set of A and ‖ · ‖L denotes the operator norm.
Here we should mention paper [9], in which the authors studied a stochastic

retarded reaction-diffusion equation on all d-dimensional space with additive
white noise. With the help of strongly continuous semigroup theory, they
considered the mild solution of the equation. Then utilizing a cut-off method,
they obtained a uniform estimation on solutions. Thus the pullback asymptotic
compactness was proved, and consequently the existence of a unique random
attractor was got. Similar method was also used in [8] to the lattice dynamical
system.

Return to Eq. (1.1), since the linear part A is not densely defined, we could
not use the theory of strongly continuous semigroup directly. Fortunately,
it is known that the non-densely defined Hille-Yosida operator generates an
integrated semigroup, which was introduced in [1] and more properties about
which will be enumerated later.

Now we consider the equation in the fading memory space Cγ , which is a
separable Banach space defined by

(1.2) Cγ =
{
φ |φ : (−∞, 0] → E is continuous and lim

s→−∞
eγsφ(s) exists

}
,

with norm ‖φ‖γ = sup−∞<s≤0 e
γs‖φ(s)‖, γ > 0. The aim of this paper is to

provide some sufficient conditions for the existence of a random attractor of
Eq. (1.1). For convenience, we suppose that the nonlinear function f : Cγ → E

satisfies the global Lipschitz condition:

(H2) there exists a constant L > 0 such that

‖f(φ1)− f(φ2)‖ ≤ L‖φ1 − φ2‖γ for any φ1, φ2 ∈ Cγ .
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The rest of the paper is organized as follows. In Section 2, we present
some basic concepts and properties of the integrated semigroup theory and
random dynamical systems. In Section 3, we convert Eq. (1.1) to a deterministic
equation with a random parameter. In Section 4, we prove the existence of a
random attractor. In the last section, as an application of our theory, we use
the age-structured problem with white noise to illustrate our result.

2. Preliminary results

In this section, we recall some basic concept related to the integrated semi-
group and random dynamical systems, see [1, 2, 14, 20] for more details.

Consider an abstract evolution equation on a general Banach space E

(2.1)
dx(t)

dt
= Ax(t) + f(xt), t > 0

with initial function x0 = ξ, where A is a Hille-Yosida operator, that is, A
satisfies (H1).

Definition 2.1 ([1]). Let T > 0. A continuous function x : (−∞, T ] → E is
called an integral solution of equation (2.1) if

(i)
∫ t

0 x(s)ds ∈ D(A) for t ∈ [0, T ];

(ii) x(t) = ξ(0) +A(
∫ t

0 x(s)ds) +
∫ t

0 f(xs)ds;
(iii) x0 = ξ.

Remark 2.2. From (i) we know that if x is an integral solution of (2.1), then

xt(0) = x(t) ∈ D(A) for t ∈ [0, T ]. In particular, ξ(0) ∈ D(A), which is a
necessary condition for the existence of an integral solution.

Definition 2.3 ([1]). An integrated semigroup is a family S(t), t ≥ 0, of
bounded linear operators on E with the following properties:

(i) S(0) = 0;
(ii) t 7→ S(t) is strongly continuous;
(iii) S(s)S(t) =

∫ s

0
(S(t+ r) − S(r)) dr for all t, s ≥ 0.

Lemma 2.4 ([14]). The following assertions are equivalent:
(i) A is the generator of a locally Lipschitz continuous integrated semigroup;
(ii) A is a Hille-Yosida operator.

Now we introduce the part A0 of A in D(A) as follows:

A0 = A on D(A0) = {x ∈ D(A); Ax ∈ D(A) }.

Proposition 2.5 ([20]). The part A0 of A in D(A) generates a strongly con-

tinuous semigroup on D(A).

Now we turn to random dynamical systems. Let (Ω,F ,P) be a probability
space, where F is the Borel σ-algebra on Ω and P is the corresponding Wiener
measure on F . (X, ‖ · ‖X) is a separable Banach space with Borel σ-algebra
B(X).
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Definition 2.6 ([2]). (Ω,F ,P, (θt)t∈R) is called a metric dynamical system, if
θ : R × Ω → Ω is (B(R) × F ,F) measurable, θ0 = id, θt+s = θt ◦ θs for all t,
s ∈ R, and θtP = P for all t ∈ R.

Definition 2.7 ([2]). A continuous random dynamical system over (Ω,F ,P,
(θt)t∈R) is a (B(R+)×F × B(X),B(X))-measurable mapping

φ : R+ × Ω×X → X, (t, ω, x) 7→ φ(t, ω, x),

such that the following properties hold:

(1) φ(0, ω, x) = x for all ω ∈ Ω and x ∈ X ;
(2) φ(t+ s, ω, ·) = φ(t, θsω, φ(s, ω, ·)) for all t, s ≥ 0 and ω ∈ Ω;
(3) φ is continuous in t and x.

Definition 2.8 ([19]). (1) A set-valued mapping ω 7→ D(ω) : Ω → 2X is said
to be a random set if the mapping ω 7→ d(x,D(ω)) is measurable for any x ∈ X .
If D(ω) is also closed (compact) for each ω ∈ Ω, the mapping ω 7→ D(ω) is
called a random closed (compact) set. A random set ω 7→ D(ω) is said to be
bounded if there exist x0 ∈ X and a random variable R(ω) > 0 such that

D(ω) ⊂ {x ∈ X : ‖x− x0‖X ≤ R(ω)} for all ω ∈ Ω.

(2) A random set ω 7→ D(ω) is called tempered provided for P-a.s. ω ∈ Ω,

lim
t→+∞

e−βt sup{‖b‖X : b ∈ D(θ−tω)} = 0 for all β > 0.

(3) A random set ω 7→ B(ω) is said to be a random absorbing set if for any
tempered random set ω 7→ D(ω), there exists t0(ω) such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω) for all t ≥ t0, ω ∈ Ω.

(4) A random set ω 7→ B1(ω) is said to be a random attracting set if for any
tempered random set ω 7→ D(ω), we have

lim
t→∞

dH(φ(t, θ−tω,D(θ−tω)), B1(ω)) = 0, for all ω ∈ Ω.

(5) A random compact set ω 7→ A(ω) is said to be a random attractor if it
is a random attracting set and φ(t, ω, A(ω)) = A(θtω) for all ω ∈ Ω and t ≥ 0.

About the following definition, we remark that one can refer to [4] for its origin.

Definition 2.9 ([3]). φ is called pullback asymptotically compact on X if
for P-a.e. ω ∈ Ω, {φ(tn, θ−tnω, xn)}

∞
n=1 has a convergent subsequence in X

whenever tn → ∞, and xn ∈ B(θ−tnω) with ω 7→ B(ω) is tempered.

In what follows, we recall the definition of the Kuratowski’s measure of non-
compactness for a bounded set B of a Banach space E, which is defined as

(2.2) κ(B) = inf{d > 0 : B has a finite cover of diameter < d},

see [13], and plays an important role in proving the pullback asymptotically
compact in Section 4.
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Theorem 2.10 ([3]). Let φ be a continuous random dynamical system over

(Ω,F ,P, (θt)t∈R). Suppose that ω 7→ K(ω) is a closed random absorbing set,

and φ is pullback asymptotically compact on X. Then φ has a unique random

attractor ω 7→ A(ω), where

A(ω) =
⋂

τ≥0

⋃

t≥τ

φ(t, θ−tω,K(θ−tω)), ω ∈ Ω.

3. Problem transformation

In this section, we focus our attention on associating a continuous random
dynamical system with Eq. (1.1). To this end, we need to convert the stochastic
equation into a deterministic equation with a random parameter. In the sequel,
we take

Ω = {ω ∈ C(R,R) : ω(0) = 0}

and identify ω(t) =W (t). Define the time shift by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.

Then (Ω,F ,P, (θt)t∈R) is a metric dynamical system. Now, we consider the
one-dimensional Ornstein-Uhlenbeck equation

dz̃ + z̃dt = dW (t).

It is obvious that its unique stationary solution can be described by

(3.1) z̃(θtω) = −

∫ 0

−∞

esω(t+ s)ds+ ω(t), t ∈ R.

Note that the random variable |z̃(ω)| is tempered and t 7→ log |z̃(θtω)| is P-a.e.
continuous (see [3] and the generalization [10]). It follows from [2, Proposition
4.3.3] that for any ǫ > 0, there is a tempered random variable r̃(ω) > 0 such
that

1

r̃(ω)
≤ |z̃(ω)| ≤ r̃(ω),

where r̃(ω) satisfies for P-a.s ω ∈ Ω,

(3.2) e−ǫ|t|r̃(ω) ≤ r̃(θtω) ≤ eǫ|t|r̃(ω).

Put z(θtω) = σz̃(θtω). Then it solves

dz + zdt = σdW (t).

Moreover, the following lemma holds.

Lemma 3.1. For any ǫ > 0, there is a tempered random variable r(ω) > 0
such that

‖z(θtω)‖ ≤ eǫ|t|r(ω),

where r(ω) = ‖σ‖r̃(ω) satisfies for P-a.s ω ∈ Ω,

(3.3) e−ǫ|t|r(ω) ≤ r(θtω) ≤ eǫ|t|r(ω).
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Lemma 3.2. For any ǫ > 0, there is a tempered random variable r′(ω) > 0
such that

‖Az(θtω)‖ ≤ eǫ|t|r′(ω),

where r′(ω) = ‖Aσ‖r̃(ω) satisfies for P-a.s ω ∈ Ω,

(3.4) e−ǫ|t|r′(ω) ≤ r′(θtω) ≤ eǫ|t|r′(ω).

Let y(t) = x(t)−z(θtω). Then y(t) satisfies the following evolution equation
with a random variable:

(3.5)
dy(t)

dt
= Ay(t) + F (θtω, yt),

with initial function

y0(s) = x0(s)− z(θsω), s ≤ 0,

where F (θtω, yt) := f(yt + z(θt+·ω)) + Az(θtω) + z(θtω). Therefore, in order
to study the asymptotic behavior of x in Cγ , it suffices to investigate Eq. (3.5)
with each initial function y0 ∈ Cγ .

According to the first part in Section 2, if A satisfies (H1), then it generates
an integrated semigroup S(t), t ≥ 0, and its part A0 generates a C0-semigroup
T0(t), t ≥ 0. Moreover, the author in [20] gives the relationship between S(t)
and T0(t):

(3.6) S(t)x = lim
λ→+∞

∫ t

0

T0(s)λ(λI −A)−1xds for x ∈ E, t ≥ 0.

On the other hand, if we denote Fω(t, ξ) := F (θtω, yt), it is easy to see that
Fω : R+ × Cγ → Cγ is continuous in t and globally Lipschitz continuous in
ξ for each ω ∈ Ω. By the classical theory concerning with the existence and
uniqueness of the solutions, we obtain:

Proposition 3.3. Assume that (H1) and (H2) are satisfied. For P-a.e. ω ∈

Ω and each y0 ∈ Cγ , if y0(0) ∈ D(A), Eq. (3.5) possesses a unique global

integral solution y(·, ω, y0) ∈ C((−∞,+∞), E) with y(0, ω, y0) = y0, which can

be expressed as

(3.7)

yt(s, ω, y0) =






T0(t+ s)y0(0)

+ lim
λ→∞

∫ t+s

0

T0(t+ s− τ)λ(λI −A)−1F (θτω, yτ (·, ω, y0))dτ,

−t < s ≤ 0,

y0(t+ s), s ≤ −t.

Here y0(0) ∈ D(A) is a necessary condition for the existence of integral solu-
tions, see Remark 2.2.

Denote by

X = {ξ ∈ Cγ : ξ(0) ∈ D(A)},
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which is also a separable Banach space. Then Eq. (3.5) generates a random
dynamical system φ over (Ω,F ,P, (θt)t∈R), where

(3.8) φ(t, ω, y0) = yt(·, ω, y0), ∀(t, ω, y0) ∈ R
+ × Ω×X.

Define ϕ : R× Ω×X → X by
(3.9)
ϕ(t, ω, x0) = xt(·, ω, x0) = yt(·, ω, y0) + z(θt+·ω), ∀(t, ω, x0) ∈ R

+ × Ω×X.

Then ϕ is a continuous random dynamical system associated with Eq. (1.1) on
X .

Note that the two random dynamical systems are equivalent. It is easy to
check that ϕ has a random attractor provided φ possesses a random attractor.
Then, we only need to consider the random dynamical system φ.

4. Existence of random attractors

In this section, we establish the existence of a random attractor by proving
the existence of a random absorbing set and the asymptotic compactness for
φ. To this end, we need the following assumption on the C0-semigroup T0(t),
t ≥ 0:

(H3) ‖T0‖L ≤ e−αt for some α > 0.

Lemma 4.1. Suppose that (H2) holds. For 0 ≤ τ ≤ t, we have

‖F (θτ−tω, 0)‖ ≤ (L+ 1)eǫ(t−τ)r(ω) + ‖f(0)‖.

Proof. Let ǫ < γ, where ǫ is the one in (3.4). By the definition of F , we have
the following estimation

‖F (θτ−tω, 0)‖

= ‖f(z(θτ−t+·ω)) +Az(θτ−tω) + z(θτ−tω)‖

≤ ‖f(z(θτ−t+·ω))− f(0)‖+ ‖f(0)‖+ ‖Az(θτ−tω)‖+ ‖z(θτ−tω)‖

≤ L‖z(θτ−t+·ω)‖γ + ‖f(0)‖+ ‖Az(θτ−tω)‖+ ‖z(θτ−tω)‖

≤ L sup
−∞<s≤0

eγs‖z(θτ−t+sω)‖+ ‖f(0)‖+ eǫ|τ−t|r′(ω) + eǫ|τ−t|r(ω)

≤ (L + 1)eǫ(t−τ)r(ω) + eǫ(t−τ)r′(ω) + ‖f(0)‖. �

Lemma 4.2. Assume that (H1)-(H3) are satisfied. For P-a.s ω ∈ Ω, we have

‖yt(·, θ−tω, y0(θ−tω))‖γ

≤
(
‖y0‖γ +

L(L+ 1)

(ǫ− L)(min{γ, α} − L)
r(ω) +

L

(ǫ − L)(min{γ, α} − L)
r′(ω)

−
1

min{γ, α} − L
‖f(0)‖

)
e(L−min{γ,α})t

+
(

ǫ(L+ 1)

(min{γ, α} − ǫ)(L − ǫ)
r(ω) +

ǫ

(min{γ, α} − ǫ)(L− ǫ)
r′(ω)

)
e(ǫ−min{γ,α})t
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+
(

min{γ, α}(L+ 1)

(min{γ, α} − ǫ)(min{γ, α} − L)
r(ω) +

min{γ, α}

(min{γ, α} − ǫ)(min{γ, α} − L)
r′(ω)

+
1

min{γ, α} − L
‖f(0)‖

)
,

where ǫ is the one in (3.4), L 6= ǫ, min{γ, α} 6= ǫ, min{γ, α} 6= L.

Proof. Suppose γ ≥ α. From (3.7) we get that

‖yt(·, θ−tω, y0(θ−tω))‖γ

= sup
−∞<s≤0

eγs‖y(t+ s, θ−tω, y0(θ−tω))‖

≤ max
{

sup
−t<s≤0

eγs
(
‖T0(t+ s)y0(0)‖

+ lim
λ→+∞

∫ t+s

0

‖T0(t+ s− τ)λ(λI −A)F (θτ−tω, yτ(·, θ−tω, y0(θ−tω))‖dτ
)
,

sup
s≤−t

eγs‖y0(t+ s)‖
}
.

In what follows, for simplicity, we take M = 1 in (H1), i.e.,

‖(λI −A)−1‖L ≤
1

λ− ω
for any λ > ω.

In fact, this can be done if we employ the renorming lemma in [17, Page 17] to
introduce an equivalent norm in E. Therefore,

‖yt(·, θ−tω, y0(θ−tω))‖γ

≤ max
{

sup
−t<s≤0

eγse−α(t+s)‖y0(0)‖

+ sup
−t<s≤0

eγse−α(t+s)

∫ t+s

0

eατ (L‖yτ (·, θ−tω, y0(θ−tω))‖γ+‖F (θτ−tω, 0)‖)dτ,

e−γt‖y0‖γ

}

≤ max
{
e−αt‖y0(0)‖+ Le−αt

∫ t

0

eατ‖yτ(·, θ−tω, y0(θ−tω))‖γdτ

+ e−αt

∫ t

0

eατ
(
(L+ 1)eǫ(t−τ)r(ω) + eǫ(t−τ)r′(ω) + ‖f(0)‖

)
dτ, e−γt‖y0‖γ

}

≤ e−αt‖y0‖γ + Le−αt

∫ t

0

eατ‖yτ(·, θ−tω, y0(θ−tω))‖γdτ

+ (L + 1)e−αt e
αt − eǫt

α− ǫ
r(ω) + e−αt e

αt − eǫt

α− ǫ
r′(ω) + e−αt e

αt − 1

α
‖f(0)‖.

Then, it deduces that

eαt‖yt(·, θ−tω, y0(θ−tω))‖γ
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≤ ‖y0‖γ + (L + 1)
eαt − eǫt

α− ǫ
r(ω) +

eαt − eǫt

α− ǫ
r′(ω) +

eαt − 1

α
‖f(0)‖

+ L

∫ t

0

eατ‖yτ(·, θ−tω, y0(θ−tω))‖γdτ.

In view of the generalized Gronwall inequality, we obtain that

eαt‖yt(·, θ−tω, y0(θ−tω))‖γ

≤ ‖y0‖γ + (L + 1)
eαt − eǫt

α− ǫ
r(ω) +

eαt − eǫt

α− ǫ
r′(ω) +

eαt − 1

α
‖f(0)‖

+ L

∫ t

0

(
‖y0‖γ + (L+ 1)

eαs − eǫs

α− ǫ
r(ω) +

eαs − eǫs

α− ǫ
r′(ω)

+
eαs − 1

α
‖f(0)‖

)
eL(t−s)ds

≤
(
‖y0‖γ +

L(L+ 1)

(ǫ− L)(α− L)
r(ω) +

L

(ǫ − L)(α− L)
r′(ω)−

1

α− L
‖f(0)‖

)
eLt

+
( ǫ(L+ 1)

(α− ǫ)(L − ǫ)
r(ω) +

ǫ

(α− ǫ)(L − ǫ)
r′(ω)

)
eǫt

+
( α(L + 1)

(α− ǫ)(α − L)
r(ω) +

α

(α− ǫ)(α− L)
r′(ω) +

1

α− L
‖f(0)‖

)
eαt,

which yields that

‖yt(·, θ−tω, y0(θ−tω))‖γ

≤
(
‖y0‖γ+

L(L+ 1)

(ǫ − L)(α− L)
r(ω)+

L

(ǫ − L)(α− L)
r′(ω)−

1

α− L
‖f(0)‖

)
e(L−α)t

+
( ǫ(L+ 1)

(α− ǫ)(L− ǫ)
r(ω) +

ǫ

(α− ǫ)(L − ǫ)
r′(ω)

)
e(ǫ−α)t

+
( α(L + 1)

(α− ǫ)(α− L)
r(ω) +

α

(α− ǫ)(α− L)
r′(ω) +

1

α− L
‖f(0)‖

)
.

Similarly, for the case that γ < α, we can get

‖yt(·, θ−tω, y0(θ−tω))‖γ

≤
(
‖y0‖γ+

L(L+ 1)

(ǫ− L)(γ − L)
r(ω)+

L

(ǫ− L)(γ − L)
r′(ω)−

1

γ − L
‖f(0)‖

)
e(L−γ)t

+
( ǫ(L+ 1)

(γ − ǫ)(L− ǫ)
r(ω) +

ǫ

(γ − ǫ)(L− ǫ)
r′(ω)

)
e(ǫ−γ)t

+
( γ(L+ 1)

(γ − ǫ)(γ − L)
r(ω) +

γ

(γ − ǫ)(γ − L)
r′(ω) +

1

γ − L
‖f(0)‖

)
.

Therefore, the conclusion holds. �

Lemma 4.3. Under the conditions of (H1)-(H3) and L < min{γ, α}, there

exists a tempered random set ω 7→ K(ω) attracting any tempered random set
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ω 7→ B(ω), that is, for P-a.e ω ∈ Ω, there is TB(ω) > 0 such that

φ(t, θ−tω,B(θ−tω)) ⊂ K(ω), ∀t ≥ TB(ω).

Proof. For y0(θ−tω) ∈ B(θ−tω), we have

‖φ(t, θ−tω, y0(θ−tω))‖γ

= ‖yt(·, θ−tω, y0(θ−tω))‖γ

≤
(
‖y0‖γ +

L(L+ 1)

(ǫ− L)(min{γ, α} − L)
r(ω) +

L

(ǫ − L)(min{γ, α} − L)
r′(ω)

−
1

min{γ, α} − L
‖f(0)‖

)
e(L−min{γ,α})t

+
(

ǫ(L+ 1)

(min{γ, α} − ǫ)(L − ǫ)
r(ω) +

ǫ

(min{γ, α} − ǫ)(L− ǫ)
r′(ω)

)
e(ǫ−min{γ,α})t

+
(

min{γ, α}(L+ 1)

(min{γ, α} − ǫ)(min{γ, α} − L)
r(ω) +

min{γ, α}

(min{γ, α} − ǫ)(min{γ, α} − L)
r′(ω)

+
1

min{γ, α} − L
‖f(0)‖

)
.

Take ǫ < min{γ, α}, then there exists TB(ω) > 0 such that for all t ≥ TB(ω),

‖φ(t, θ−tω, y0(θ−tω))‖γ ≤ c1r(ω) + c2r
′(ω) + c3,

where

c1 =
min{γ, α}(L+ 1)

(min{γ, α} − ǫ)(min{γ, α} − L)
+ 1,

c2 =
min{γ, α}

(min{γ, α} − ǫ)(min{γ, α} − L)
+ 1,

c3 =
1

min{γ, α} − L
‖f(0)‖+ 1.

For any given ω ∈ Ω, we denote by

K(ω) = {ξ ∈ Cγ : ‖ξ‖γ ≤ c1r(ω) + c2r
′(ω) + c3}.

Then ω 7→ K(ω) is a tempered random set because r(ω) and r′(ω) are tempered.
Moreover, it is absorbing. �

Lemma 4.4. Assume that (H1)-(H3) are satisfied. For any y01, y02 ∈ B(ω),
where ω 7→ B(ω) is a tempered random set, we have

(4.1)

‖φ(t, ω, y01)− φ(t, ω, y02)‖γ ≤ e−(min{γ,α}−L)t‖y01 − y02‖γ , ∀t ≥ 0, ω ∈ Ω.

Proof. According to (3.7) and (3.8), we have

‖φ(t, ω, y01)− φ(t, ω, y01)‖γ = ‖yt(·, ω, y01)− yt(·, ω, y02)‖γ

≤ max
{

sup
−t<s≤0

eγs‖T0(t+ s)(y01(0)− y02(0))‖
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+ sup
−t<s≤0

eγs lim
λ→+∞

∫ t+s

0

‖T0(t+ s− τ)λ(λI −A)−1(F (θτω, yτ (·, ω, y01))

− F (θτω, yτ(·, ω, y02)))‖dτ, sup
s≤−t

eγs‖y01(t+ s)− y02(t+ s)‖
}

≤ e−min{γ,α}t‖y01 − y02‖γ

+ Le−min{γ,α}t

∫ t

0

emin{γ,α}τ‖yτ (·, ω, y01)− yτ (·, ω, y02)‖γ .

Then it is easy to obtain that

emin{γ,α}t‖yt(·, ω, y01)− yt(·, ω, y02)‖γ

≤ ‖y01 − y02‖γ + L

∫ t

0

emin{γ,α}τ‖yτ (·, ω, y01)− yτ (·, ω, y02)‖γ .

By the classical Gronwall inequality, we arrive at

emin{γ,α}t‖yt(·, ω, y01)− yt(·, ω, y02)‖γ ≤ eLt‖y01 − y02‖γ ,

which yields the conclusion. �

Lemma 4.5. Let (H1)-(H3) hold and L < min{γ, α}. Then φ is pullback

asymptotically compact.

Proof. We need to prove that for every sequence tn → +∞ and P-a.e ω ∈ Ω,
the sequence {φ(tn, θ−tnω, y0(θ−tnω))}

+∞
n=1 has a convergent subsequence as

tn → +∞, where y0(θ−tnω) ∈ B(θ−tnω) with ω 7→ B(ω) tempered. We do this
by proving the following limit of the Kuratowski’s measure of non-compactness:

κ
(
φ(tn, θ−tnω,B(θ−tnω))

)
→ 0, tn → +∞.

Replacing t by tn and ω by θ−tnω in (4.1), for any y01(θ−tnω), y02(θ−tnω) ∈
B(θ−tnω), we have

‖φ(tn, θ−tnω, y01(θ−tnω))− φ(tn, θ−tnω, y02(θ−tnω))‖γ

≤ e−(min{γ,α}−L)tn‖y01(θ−tnω))− y02(θ−tnω))‖γ .

Since ω 7→ B(ω) is tempered, for any ǫ > 0 and each ω ∈ Ω, there ex-
ist tempered random sets Bi(θ−tnω), i = 1, 2, . . . ,m, such that B(θ−tnω) ⊂⋃m

i=1 Bi(θ−tnω) and the diameter of Bi(θ−tnω) satisfies

diam(Bi(θ−tnω)) ≤ κ(B(θ−tnω)) + ǫ, i = 1, 2, . . . ,m.

For any u, v ∈ φ(tn, θ−tnω,Bi(θ−tnω)), there exist u0, v0 ∈ Bi(θ−tnω) such
that u = φ(tn, θ−tnω, u0), v = φ(tn, θ−tnω, v0). Thus,

‖u− v‖γ = ‖φ(tn, θ−tnω, u0)− φ(tn, θ−tnω, v0)‖γ

≤ e−(min{γ,α}−L)tn‖u0 − v0‖γ

≤ e−(min{γ,α}−L)tndiam(Bi(θ−tnω))
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≤ e−(min{γ,α}−L)tnκ(B(θ−tnω)) + ǫ,

which implies that

diam(φ(tn, θ−tnω,Bi(θ−tnω)) ≤ e−(min{γ,α}−L)tnκ(B(θ−tnω)) + ǫ.

Therefore,

κ
(
φ(tn, θ−tnω,Bi(θ−tnω)

)
≤ e−(min{γ,α}−L)tnκ(B(θ−tnω)) + ǫ,

and hence

κ
(
φ(tn, θ−tnω,B(θ−tnω)

)
≤ e−(min{γ,α}−L)tnκ(B(θ−tnω)) + ǫ.

By the arbitrary of ǫ, we obtain that

κ
(
φ(tn, θ−tnω,B(θ−tnω)

)
≤ e−(min{γ,α}−L)tnκ(B(θ−tnω)) → 0, tn → +∞.

�

As a consequence of Theorem 2.10, Lemmas 4.3 and 4.5, we have already
proved the main result of this paper.

Theorem 4.6. Suppose that (H1)-(H3) hold. If L < min{γ, α}, the contin-

uous random dynamical system φ defined in (3.8) possesses a unique random

attractor ω 7→ A(ω) ⊂ X, where

(4.2) A(ω) =
⋂

τ≥0

⋃

t≥τ

φ(t, θ−tω,K(θ−tω)), ω ∈ Ω,

with K(ω) given in Lemma 4.3.

Corollary 4.7. If (H1)-(H3) are satisfied and L < min{γ, α}, then the con-

tinuous random dynamical system ψ associated with (1.1) possesses a unique

random attractor ω 7→ A(ω) + z(θ·ω) ⊂ X, where A(ω) is given in (4.2),
z(θsω) = σz̃(θsω), s ≤ 0, with z̃ given in (3.1)

5. Example

As an application of Theorem 4.6, we consider the following partial differ-
ential equation with white noise
(5.1)





∂tu+ ∂au = −µ(a)u(t, a)

+

∫ 0

−∞

k(s)

∫ +∞

0

f(a, b, u(t+ s, b))dbds+ δ(a)Ẇ (t), t > 0, a > 0,

u(t, 0) = β

∫ +∞

0

u(t, a)da, t > 0,

u(s, a) = u0(s, a), a > 0,

where u(t, ·) ∈ L1(0,+∞), the space of Lebesgue integrable functions with
values in R, µ ∈ L1(0,+∞) with nonnegative values, δ ∈ H1(0,+∞), δ(0) = 0,
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β ≥ 0 and W (t) is the white noise. For more information about Eq. (5.1)
without the white noise, we refer the reader to [24].

Let

E = R× L1(0,+∞)

with the usual product norm of R× L1(0,+∞). Define A : D(A) ⊂ E → E as
follows

(5.2) A

(
0
φ

)
=

(
−φ(0)

−φ′ − µφ

)
,

(
0
φ

)
∈ D(A),

where

D(A) = {0}R × {φ ∈ L1(0,+∞) : φ′ ∈ L1(0,+∞), φ(0) = 0}.

It is clear that E0 = D(A) = {0}R × L1(0,+∞) 6= E.
Suppose that there exists a constant γ > 0, such that

(5.3) µ(a) > γ, ∀a ≥ 0.

Then denote

Cγ =
{(

a

φ

)
: a ∈ R, φ ∈ C((−∞, 0], L1(0,+∞)) and lim

s→−∞
eγsφ(s) exists

}

with the norm
∥∥∥
(
a

φ

)∥∥∥
γ
= |a|+ sup

−∞<s≤0
eγs‖φ‖L1

and define the nonlinear term F : Cγ → E as follows

(5.4) F
(( 0

φ

))
=




β
∫ +∞

0 φ(0)(a)da
∫ 0

−∞ k(s)
∫ +∞

0 f(a, b, φ(s)(b))dsdb


 .

Moreover, set v(t) =
(

0
u(t,·)

)
∈ E0, vt =

(
0
ut

)
∈ Cγ and

(
0
ξ

)
= v0 ∈ Cγ , where

ξ(s)(a) = u0(s, a), and σ = ( 0δ ) ∈ E, then Eq. (5.1) can be written as

(5.5)

{
dv(t) = Av(t)dt+ F (vt)dt+ σdW (t), t > 0,

v(0) = v0 ∈ Cγ .

Proposition 5.1. (i) The operator A defined in (5.2) is a Hille-Yosida operator

with (−γ,+∞) ⊂ ρ(A) and

‖(λI −A)−1‖L ≤
1

λ+ γ
, ∀λ > −γ;

(ii) the C0-semigroup T0(t), generated by A0 on X0, satisfies that

‖T0(t)‖L ≤ e−γt, ∀t ≥ 0.
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Proof. (i) From (5.2), we know that

(λI −A)

(
0
φ

)
=

(
φ(0)

φ′ + (λ + µ)φ

)
.

Set y = φ(0) and ψ = φ′ + (λ+ µ)φ. Then

(5.6) φ(a) = e−λa−
∫

a

0
µ(s)dsy +

∫ a

0

e−λ(a−s)−
∫

a

s
µ(τ−s)dτψ(s)ds.

By (5.3), φ ∈ L1(0,+∞) provided that λ > −γ. Therefore, for any λ > −γ,

(λI −A)−1

(
y

ψ

)
=

(
0
φ

)

if and only if (5.6) holds. A simple calculation shows that

‖(λI −A)−1‖L ≤
1

λ+ γ
, ∀λ > −γ.

(ii) The C0-semigroup T0(t), generated by A0 on E0, possesses the following
form

(5.7) T0(t)

(
0
φ

)
=

(
0

T̃0(t)φ

)
,

where

(5.8) T̃0(t)φ =

{
0, a < t,

φ(a− t)e−
∫

a

a−t
µ(τ)dτ , a ≥ t.

Then ∥∥∥T0(t)
(

0
φ

)∥∥∥ = ‖T̃0(t)φ‖L1

=

∫ +∞

t

|φ(a− t)e−
∫

a

a−t
µ(τ)dτ |da

=

∫ +∞

0

|φ(a)|e−
∫

a+t

a
µ(τ)dτda

≤ e−γt‖φ‖L1 ,

which implies that ‖T0(t)‖L ≤ e−γt, ∀t ≥ 0. �

In order to obtain the existence of a random attractor of Eq. (5.1), we need
the following assumption on f :

(Hγ) there exists a nonnegative function L(·) ∈ L1(0,∞) such that
∫ +∞

0

|f(a, b, φ1(s)(b))−f(a, b, φ2(s)(b))|db ≤ L(a)‖φ1(s)−φ2(s)‖L1 , ∀a ≥ 0.

Then F is globally Lipschitz continuous with Lipschitzian constant

β + ‖L‖L1

∫ 0

−∞

eγsk(s)ds.



RANDOM ATTRACTOR FOR STOCHASTIC DIFFERENTIAL EQUATIONS 1483

Theorem 5.2. Suppose that (Hγ) and (5.3) hold true. Moreover, if

γ > β + ‖L‖L1

∫ 0

−∞

eγsk(s)ds,

then Eq. (5.1) has a random attractor.
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