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NUMERICAL RESULTS ON ALTERNATING DIRECTION
SHOOTING METHOD FOR NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

Do Hyun KIM

ABSTRACT. This paper is concerned with the numerical solutions to steady state
nonlinear elliptical partial differential equations (PDE) of the form w4 +uyy+ Duz +
Euy+Fu = G, where D, E, F are functions of z, y, ¥, uz, and u,, and G is a function
of x and y. Dirichlet boundary conditions in a rectangular region are considered.
We propose alternating direction shooting method for solving such nonlinear PDE.
Numerical results show that the alternating direction shooting method performed
better than the commonly used linearized iterative method.

1. INTRODUCTION AND PRELIMINARIES

This paper is concerned with the numerical solutions to steady state 2-dimensional
nonlinear elliptical partial differential equations of the form

(1.1) Ugg + Uyy + Dug + Euy + Fu=G

where D, E, F are functions of z, y, u, ug, and u,, and G is a function of z and y.
Dirichlet boundary conditions in a rectangular region are imposed. Usually, large
sparse algebraic systems are generated when a finite difference discretization scheme
is applied. Iterative algorithms are often used to obtain solutions to the algebraic sys-
tems. When the partial differential equation is linear so is the algebraic system and
many iterative algorithms have been developed for symmetric positive definite sys-
tems (2,9, 14], indefinite systems (7, 8, 14], and nonsymmetric systems [6, 10, 14, 15].
However, when the partial differential equation is nonlinear the algebraic equations
generated by the discretization process may also be nonlinear. Commonly used it-
erative algorithms for solving a nonlinear system involve an “inner-outer” iteration
[1]. The outer iteration is devised by a method of successive approximations.
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Douglas [5] solved a “mildly” nonlinear elliptical equation of the form

(12) Uz + Uyy = f(x’yi u)

in a rectangular region R, where f is a nonlinear function in u. We note that the
equation (1.2) is a special case of the equation (1.1). Dirichlet boundary conditions
u = g(x,y) are also imposed. Moreover, Douglas assumed that for some constants
m and M, 9u 1sboundedsothat0<m<%<M<oo
Let us put a mesh on the rectangular region R as shown in figure 1.1 and let the
mesh size h in both z and y directions be the same. Using the 5-point stencil (see
figure 1.2) and the central difference method, the partial differential equation at the
point (%, j) can be approximated as
CUit1 F U1+ Uiy U1 — du
h2
and u; ; = g(x;,y;) on the boundary of R.

= f(x“yj’u"'v])
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Instead of using the Picard method for the outer iteration in Douglas’ procedure,
he used the modified Picard method. A parameter « is introduced in the modified

method such that
LD L (D) () (D) (n+1)
+ u, + u; +u — 4u;
1 1 1 1 \ 1
(1.3) Yit1,) i~1.j 1.;;; Y- %5 (n+ ) _ f(x“yj, ”))_au(n)
The solution of this linear system is accomplished by an inner iteration. This is
carried out by means of an alternating direction method [13, 16] that solves linear

systems. The optimum value of a, in (1.3), is shown to be [5]

1
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The choice of the procedure carried out in (1.3) improves the outer iteration. It is
reported that the number of outer iterations with Picard method is independent of
h. In a later section, our numerical results also confirm the analysis.

In this paper, we propose the shooting method in alternating directions for the
inner iteration. Generally, shooting methods are techniques for solving ordinary
differential equations with béundary values.

Numerical results show that the alternating direction shooting method performed
better than the commonly used linearized iterative method. Moreover, the greatest
advantage of using the alternating shooting method is that the computation is totally
parallel making it suitable for parallel computation resulting in greater speedup.
However, we note that the shooting method suffers from stability problems in the
same way it does in ordinary differential equations. A possible remedy for these
limitations is the consideration of multiple shooting methods [11].

In Section 2, the shooting method as well as their implementations is introduced
to solve (1.1). In Section 3, convergence analysis for perturbed linear and nonlinear
differential equations are discussed. Theoretical proofs indicate that the conver-
gence is linear. Numerical results agree with the theory. In Section 4, numerical
experiments are carried out for the numerical methods described in Section 2 and

comparisons are made. Finally, conclusions are given in Section 5.

2. NUMERICAL MET_HODS AND THEIR IMPLEMENTATIONS

In this section, we describe the numerical methods and their implementations,
which are used in this paper, for solving a 2 space dimensjonal nonlinear partial
differential equation (1.1) with Dirichlet boundary conditions.

(A) SHOOTING METHOD

A general nonlinear ordinary differential equation with boundary conditions may
be written in the form

(2.1) v = flz,u,u), a<z < b, u(a) = a, u(d) =4

where f satisfies the conditions in the following theorem. The theorem, which was
proven by Keller [11], assures the existence and uniqueness of the solution to the
boundary value problem (2.1).

Theorem 1. Suppose the function f in the boundary-value problem (2.1) is conti-
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-nuous on the set D = {(z,u,u') |a <z < b,—00 < u < 00,~0 < v < 00} and
that the partial derivatives f, and f are also continuous on D. If

() fulz,u,u') >0, for all (z,u,%) € D, and

(ii) a constant M ezists, with

| £ (z,u, ul) |< M, for all (z,u,u) € D,
then the boundary-value problem has a unique solution.

The shooting method is a numerical technique that solves the nonlinear second-
order boundary value problem (2.1). Detailed description can be found in [3]. The
procedure is to approximate the solution to the boundary-value problem by using
the solution to a sequence of initial-value problems involving a parameter t. The
initial value problems have the form

(2.2) u = flz,u,u), a<z <b, u(a) = a, u'(a) =t.
We solve this by choosing a sequence of the parameters t = t; so that
(2.3) lim u(b, tx) =u(d) =4

k—00

where u(z, t;) denotes the solution to the initial-value problem (2.2) with u'(a) = #.
Since we assume that the boundary value problem satisfies the conditions in Theorem
1, from the uniqueness property the solution u(x,%), which satisfies (2.3), is the
solution of the boundary value problem (2.1).

We start with a parameter ¢ that determines the initial slope, we then solve the
initial value problem (2.2) with u'(a) = #y. After getting the solution u(z,ty) we
check whether u(b,tp) is sufficiently close to 8. If not, we then correct the slope by

choosing
9(tx)
b =te— S k012,
* g (tk)
where g(t) = u(b, tx) — 8 and g (tx) = %u(b, tr). Since we do not have an explicit

function for ¢’ (t), we must find an approximation by solving the initial value problem
(2.4) 2 (z,t) = fule,u,2)2(z,t) + fy(z,u,2)2 (2,t), a< T <b
with the initial conditions

z(a,t) = 0 and 2 (a,2) =1

where z(z,t) = %u(z, t).
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We then use the Runge Kutta method of order 4 to solve the initial valueaproblem
(2.4) for any given t; to obtain z(z,tx) and evidently we obtain z(b, ;) = é-zu(b, tx)

that is an approximation of g (t).

(B) ALTERNATING DIRECTION PROCEDURE

We noted that the shooting method is implemented in alternating direction man-
ner. We now describe the procedure for the alternating direction for the equation
(1.1). |

The alternating direction procedure for the equation is as follows: treat the partial
differential equation as an ordinary differential equation by assuming that one of the
variables and all corresponding partial derivatives are constants. Therefore equation
(1.1) becomes an ordinary differential equation in the variable

(2.5) Uz + Dug + Fu = G(z,y) — (uyy + Euy)

where the value of y is fixed and u, and u,, are approximated by either a finite
difference scheme or by solving (1.1) for uyy + Fu,. We note that if D and E consist
of uy, we do the same approximation. Similarly, equation (1.1) becomes an ordinary
differential equation in the variable y '

(2.6) Uyy + Euy + Fu = G(z,y) — (ugz + Dug),

where the value of z is fixed u, and u, are approximated by either a finite difference
scheme or by solving equation (1.1) for uzy + Du,. We note that if D and E consist
of uy, then we perform the same approximation.

When the solution u changes, we notice that the approximations in the right side
of equations (2.5) and (2.6) are altered. It is assumed that the sequence of changes
is getting smaller, and that thus the limit of the approximating solutions approaches
the exact solution.

The alternating direction procedure for solving the equation (1.1) is described
below. We impose a rectangular mesh on the region as given in Fig. 1.1, where the
equation is defined. For each j, the value of y is fixed, thus we solve the equation
(2.5) for all j to obtain a half step estimation of the solution to the equation (1.1).
Then we use the estimation to approximate the right side of equation (2.6) in which
for each i, the value of z is fixed. After solving the equation (2.6) for all ¢, we obtain a
full step estimation of the solution to the equation (1.1). This alternating direction
procedure is as follows: the equation (2.5) is solved using x as the variable and
then the equation (2.6) is solved using y as the variable. The alternating direction
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procedure was shown to converge for linear partial differential equations [13,16].
The algorithm is given below.

Algorithm 1.
(1) Choose an initial guess u® and a small value € > 0;
(2) Approzimate the right hand side of (2.5) using u(®;
(3) Use the shooting method to solve (2.5) to obtain an estimation u(l/?);
(4) Approzimate the right hand side of (2.6) using u(}/?;
(5) Use the shooting method to solve (2.6) to obtain an estimation u(V);
(6) Check || ult) — u® ||< €, if yes, exit;
(7) If no, let u® = 4@ go to (2).

(C) APPROXIMATION SCHEMES FOR “CONSTANT VARIABLE”

As mentioned in (B), we derive two ordinary differential equations (2.5) and (2.6)
from (1.1) in the variables z and y, respectively. In order to solve (2.5) using the
shooting method, we need an approximation for u, and u,,. We use two different
schemes in our study.

(1) Finite difference scheme: Based on the mesh and the stencil given in Fig. 1.1

.. —_— Ui i .. —_ 2 .. s
and 1.2, we let Uy = E!LJHTW and Uyy = Ui, j+1 Z‘;,J + uqj 1' Then (25)
becomes .
1 — D s o i
Ugz + Dug + Fu = G(z,y) — (“’,JH Z’;J R il E“z,J+12h“w 1 )

We note that if the function E depends on u,, then we also approximate E accord-
ingly. We approximate the equation (2.6) in a similar way.

(2) Getsum scheme: One can also try to approximate uyy + Euy by solving wy, + E'u,
from (1.1) which gives

Uyy + Euy = getsum(z,y, u, g, Uzz) = G(Z,Y) — Uzge — Duz — Fu

Ui 541 — 255 + Ui j1
h?

Uj+1.5 — Ui—-1,5 . .
e =Y B . Therefore, in this

where u, = and ugzy =

way, (2.5) becomes
Ugz + Dug + Fu = G(z,y) — getsum(z,y, u, Uz, Uz )-

Similarly, we can do the same for (2.6) and we will get

s — Qs L Ui
Uyy + Buy + Fu = G(z,y) — (uz—l—l,] Z;,]+u, Ld +Dw+1’12h1jlz 1’J>y

and

Uyy + Duy + Fu = G(z,y) — getsum(z, y, u, Uy, Uyy),
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where ugy + Dug = getsum(z, y, u, uy, uyy) = G(z,y) — uyy — Buy — Fu.
The computational experiments and the findings resulting from the application
of the methods described will be depicted in the following sections.

3. CONVERGENCE FOR PERTURBED LINEAR & NONLINEAR D.E.

As we have noted in the preceding section, the right sides of equations (2.5) and
(2.6) are changing during the alternating direction procedure; and it is hoped that
the changes are getting smaller. In this section, we investigate the convergence in
case the right hand sides of the equations (2.5) and (2.6) are perturbed.

We first consider the linear problem without any perturbation as the exact prob-
lem (EP)

u' +pe)y +g(z)u = f
(EP) { u(a) = a, u(d) =2
where p and ¢ are continuous functions and q < 0 for all z in [a, b], and the problem
with perturbation € in the right side as the approximate problem (AP)
v +pla)u +o@u=f+e¢
an) {4 P '
If @ is the solution of (EP) that indicates the exact solution and u* is the solution
of (AP) which is an approximation of (EP), then it is hoped that when ¢ — 0
also u* — . Without loss of generality, we may assume that [a,b] = [0,1]. Let
w = 4 — u*, then w satisfies the modified problem (MP)
py { W+ +e@w=c
(MP) { w(0) =w(l)=0
We claim that the solution w of (MP) satisfies

3.1) fwil<k[e]l

Ase — 0 and w — 0 for some constants k > 0, that implies % —u* — 0 and evidently
u* — @. The relation (3.1) indicates the convergence is linear.
To prove (3.1), we first assume that the general solution to the homogeneous
equation (HP)
(HP) w" + p(z)w + q(z)w =0, w(0) = w(l) =0
is of the form

w(z) = c1 f(z) + c29(z)
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where f and g are linearly independent functions and c;, ¢ are constants. To solve
(MP), we use the method of variations of parameters, the particular solution is

wp(x) = A(2)f(z) + B(@)g(a).

By taking derivatives and plugging into (MP), we obtain a system of algebraic

equations
{ f(@)4 (z) + g(z)B () =
f(z)A(z)+g(x)B(z)=¢
Let A(z) = f/(x) q(i:)) . Since f and g solves the (HP) and are linearly indepen-
dent, A(z) is never 0. The solutions for A'(z) and B'(x) are A'(z) = —jf((zg and

Consequently we obtain

T eg(t) _ [fef@)
A(m)=/0 9t o dB(m)—/O 4

Thus the particular solution to (MP) is

=10 f0) . [ 9@ - F@o0)
wile) = o) [} S oo [ e = [ SO =T

Welet (@) £(t) — f(z)g(t)
T g(x) f(t T)g
@)=} o0 —g0r @™

The general solution is
w(z) = c1 f(z) + cag(z) + el{x).

Applying the boundary conditions we obtain c; and ¢z as
o = €9(0)I(1) —efOI0)
T f(0)9(D) - F(D)g(0) F0)9(1) - F(1)g(0)
Therefore the general solution w(z) for the (MP) can be written as
) (O NVINS (00 N
@) =<ty e Tt @ )]

It clearly show that w(z) — 0 as € — 0 linearly; which concludes the proof for the

and ¢p =

linear case. An alternate proof is given in [4].
As for nonlinear case, we assume the exact problem is

(ENP) v" = F(u,u, f(z)), u(a) = o and u(b) = 8
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and assume that the approximated problem
u' = F(u,u, f(z)) +e, u(a) = and u(b) =

Suppose that @ and u* are the solutions to (ENP) and (ANP) respectively. Let
w = u* — 4. Then using perturbation techniques, it can be shown that w is small
and | w K 1.
We substitute u* = % + w into (ANP); we obtain

4w =Fa+wd +w,f(z)+e

a(a) + w(a) = o and a(b) + w(b) =
Since w and w' are small, we use Taylor series expansion for F (4 + w, 7 + w', F))
and keep only the linear terms, we get

oF OF .

Flu+wu +w,f)= F(uuf)+ +%w.

Thus
F
(3:2) @ +w' —F(u+u,f)+aFw+gu,w + €.
Subtract the (ENP) from the equation (3.2), we obtain
n OF oF ,
= — b) =
w 8uw+8u'w +¢e, w(a)=0and w(b) =0.

Then we have
" BF 1 BF
w

“aY T Hv =6 w(a) =0 and w(b) =

F F .
Let p(z) = —%7 and ¢(z) = _g_u' Then follow the analysis for linear case, we
obtain w — 0 as £ — 0 linearly; which concludes the proof for nonlinear case.

4. NUMERICAL EXPERIMENTS

In this section we present numerical results on model problems using the three
numerical methods that were introduced in Section 2. The model problems that
involve two dimensional nonlinear partial differential equations are described below.

Model Problem 1:

Py H%u ou OJu
= —y— 0,1] x [0,1],
8z2 o2 8y +u3:1: 0y u=Q+a)et-v-1), 01x01)

u(O y) Y, u’(la y) =2y, U(IL',O) =0, 'U.(.’E, =1+z.
The exact solution is u(z,y) = (1 + z)y.
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Model Problem 2:
%y 0% Ou Ou 9
bl Wil — 21—y 1
2 + 3y +2.'I:8x 3y v 1—z—(zy)*, [0,1] x[0,1],
'U,(O, y) =1= u(x, O)’ u(lv y) =14y, u(x5 1) =1l+z.
The exact solution is u(z,y) =1 + zy.

Model Problem 3:

O%u O Ou Ou .
322 ayz—ku(9 +cosy—é——u z(1—2siny), [0,1] x[0,1],

u(0,y) =0 = u(z,0), wu(l, y) =siny, wu(z,1)==zsinl.
The exact solution is u(z,y) = zsiny. '

Model Problem 4:

2 2,
% "‘g 7t ( )Z—u— —e % — e~ %siny, [0,1] x [0,1],

u(0,y) =siny, u(l,y) =e lsiny, u(z,0)=0, wu(z,1)=e *sinl.

The exact solution is u(z,y) = e *siny.

4.1. NONLINEAR SHOOTING METHOD
4.1.1. GETSUM SCHEME FOR THE SHOOTING METHOD

We first study the nonlinear shooting method using the second approximation

scheme discussed in 2.C on these four model problems with the uniform mesh sizes
h=4i L 1 1
T 257 50° 100° 200°

solutions are provided for all model problems, we undertake a twofold error analysis:

and ﬁj on both the z and the y directions. Since the exact

(i) the numerical solution is compared to the exact one, and (ii) the error between
two successive approximations. These are shown in Tables 1 and 2, respectively. The
errors are computed by the two-norm. The stopping procedure used in these model
problems was to end the iteration process whenever successive iterates differed by
less than 1076,

The initial guess of the numerical solution for this scheme is chosen to be the
value of the numerical solution in the previous space level. For example, when we
shoot in the level j = 1, then the approximate solution at j = 0, which is the
boundary, is the initial guess.

Table 1(a-c) gives the result when the nonlinear shooting method converges or
the maximum number of iteration is met in the z direction alone, in the y direction
alone, and in the z direction then in the y direction, respectively. From these tables,
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(a) Mesh Size h
in z 1/25 1/50 1/100 1/200 1/400
1} 5.116550E-07 | 5.557681E-07 | 6.013077E-07 | 6.285047E-07 | 6.359865E-07
Ilé’/ll%(li:)(lal:m 2{ 6.764964E-07 | 5.876031E-07 | 5.120789E-07 | 4.427052E-07 | 3.813978E-07
3| 1.879890E-07 | 1.756370E-07 | 1.586023E-07 | 4.508507E-07 | 3.787524E-07
41 1.284277E-01 | 2.602919E-01 | 5.240115E-01 | 1.051448E+400 | 2.106317E+00
(b) Mesh Size h
in y 1/25 1/50 1/100 1/200 1/400
1 6.187057E-07 | 7.045971E-07 | 1.641077E-07 | 1.677084E-07 | 9.185222E-08
Il\)/[r%%elém 2| 1.319260E-07 | 3.395989E-07 | 2.179453E-07 | 1.046749E-07 | 2.386439E-07
3 6.022762E-01 | 1.223231E+00 | 2.465115E+00 | 4.948870E+00 9.916375E+00
4] 6.885316E-01 | 1.395721E+00 | 2.810055E4-00 | 5.638702E+00 | 1.129598E+01
(0 Mesh Size h
in both 1/25 1/50 1/100 1/200 1/400
1] 8.291146E-08 | 2.281750E-07 | 1.287741E-07 | 4.151793E-07 1.150775E-07
g&%%?ém 2| 1.413502E-07 | 5.192428E-08 | 1.929839E-07 | 2.215420E-07 2.605715E-07
3| 4.338306E-01 | 8.801644E-01 | 1.772726E400 | 3.557795E+00 | 7.127906E+00
4i 4.520911E-01 | 9.167890E-01 | 1.846354E+00 [ 3.705572E+00 | *7.143374E+00
*Overflow after 4 iterations.
Table 1. Errors comparing with the exact solution

we see that the approximated solutions are close to the exact solution in model
problems 1 and 2 in which v, and Uy, are zero.

However in the model problem 3, ug, is zero but uy, is not. When the shooting
method is used in the z direction alone one can obtain good results. However, when
we shoot in the y direction, the approximation obtained is not quite satisfactory.
In model problem 4, with both u,, and uy, not zero, then the numerical solutions
obtained by the shooting method in both the z direction and in the y direction are
not satisfactory. From Table 1(c) we see that even if shooting in the x direction
yields a good result, it can be spoiled by including the method in the y direction,
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Mesh Size h
1/25 1/50 1/100 1/200 1/400
1] 1.8688263E-13 | 1.0214385E-12 | 6.1235617E-12 | 3.5131736E-11 | 7.8140087E-10

Model -

Probler 2| 1.8448553E-13 | 9.4572467E-13 | 1.5090459E-11 | 8.4224632E-11 | 4.9085748E-10
3| 5.1451364E-04 | 3.3564739E-04 | 5.1227495E-04 | 5.6648101E-03 | 8.4927635E-02
41 1.1584041E-03 | 9.2020224E-04 | 2.1187400E-03 | 1.7685128E-02 | 9.7496142E-02

Table2. Errors comparing with the exact solution; Nonlinear Shoot-

ing Method
Mesh Size h
1/25 1/50 1/100 1/200 1/400
1| 1.8708629E-13 | 1.0216000E-12 | 6.1235491E-12 | 3.5131688E-11 | 7.8140115E-10
II\’/Ir%cli)?ém 2| 1.8420899E-13 | 9.4538760E-13 | 1.5087117E-11 | 8.4217847E-11 | 4.9084806E-10
3| 1.5730486E-03 | 9.2711797E-04 | 7.05511021E-04 | 5.9091536E-03 | 8.5045667E-02
4[ 1.9894474E-03 | 1.6433187E-03 | 5.7063497E-03 | 3.0328584FE-02 | 0.15446275265

Table 3. Errors comparing with the previous iteration; Nonlinear

Shooting Method
Mesh Size h
1/25 1/50 1/100 1/200 1/400
1 1 1 1 1 1
Model
Problem| 2 1 1 1 1 1
3{ 15(0.001) | 13(0.0005) | 10(0.001) | 20(0.04) | 16(0.05)
4 15(0.01) 23(0.01) 21(0.24) | 30(0.24) | 28(0.5)

Table 4. Number of Outer Iterations

because u,, is not zero. This phenomenon suggests that the nonlinear shooting
method is not as effective when either of the second partial derivatives is not zero.

4.1.2. FINITE DIFFERENCE SCHEME FOR SHOOTING METHOD

The initial guess for the finite difference scheme is chosen to be an average of the

two boundary values for each space level. For example, for j = 1, assuming the left
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end boundary to be & and the right end boundary value to be 3, then at each grid
i/

point i the approximation solution is & + i x h * — % where h =

In this section we repeat the numerical experim-(;,nts that have berén done in the
previous section. We use a finite difference scheme to approximate the right sides of
the equations (2.5) and (2.6).

Table 2 and 3 are the results that show how close the approximated solutions
are to the exact solution, and how close two successive iterations are, respectively.
Instead of shooting in a separate direction alone as we have done in the previous
section, we use Algorithm 1 which is based on the alternating direction principle.
We notice that the results for model problems 1 and 2 are very good. However, the
results for model problems 3 and 4 are not as good as those for model problems 1
and 2, even though they are acceptable.

In the actual numerical experiments, the error of 1073 or 10~ given in the paren-
theses could be obtained within a certain number of outer iterations, the numbers
are given in Table 4.

Table 4 shows that an accurate solution was reached in one outer iteration for
the model problems 1 and 2. Because the error term of the central difference scheme
involves the fourth partial derivatives of the solutions, we conjecture that the solution
obtained in one outer iteration comes from the fact that all the fourth order partial
derivatives of the exact solutions for the problems are zero.

4.2. FINITE DIFFERENCE METHOD: LINEARIZED ITERATIVE METHOD

The initial guess for this method is chosen to be a constant throughout all the
grid points. In this section, we show the results on our model problems using the
linearized iterative finite difference method. Table 5 shows the errors comparing
with the exact solution for each mesh h. Table 6 shows the results of the errors
comparing with the previous iteration.

We notice that the linearized iterative method is the most commonly used algo-
rithm for solving nonlinear partial differential equations. Most cases considered in
our study did not yield results that are as accurate as those discussed in the previ-
ous sections. From Table 6, we see that the linearized iterative algorithm reached
convergence (the error of two consecutive approximation solutions is small enough)
but the approximated value is not close enough to the exact solution. Moreover, the
algorithm suffers from roundoff errors. This is shown in Table 6; the decrease of h
is associated with a decrease of accuracy.
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Mesh Size h
1/25 1/50 1/100 1/200 1/400
|1 7.040610E-13 | 1.0216000E-05 | 3.633131E-02 | 1.034148E-01 | 6.11999737
Ilglr(())(li)eklerr 2 | 3.088148E-04 | 1.872736E-03 | 1.191016E-02 | 6.454872E-02 | 10.21935416
3 | 2.482891E-01 | 4.970955E-01 | 9.944290E-01 | 1.98888951 3.17761121
4| 5.735738E-04 | 3.916668E-04 | 2.325716E-03 | 9.550406E-03 | 1.31617791

Table 5. Errors comparing with the exact solution ; Linearized Iter-
ative Method

Mesh Size h
1/25 1/50 1/100 1/200 1/400
1| 8.541305E-8 | 1.707771E-07 | 3.461992E-07 | 7.033384E-07 | 3.466550E-08
yr%%in 2 | 5.523015E-07 | 6.094083E-08 | 1.203735E-07 | 2.435605E-07 | 4.931379E-07
3 | 3.007410E-08 | 5.897043E-08 | 1.2056622E-07 | 2.330766E-07 | 1.451794E-07
4§ 1.417153E-07 | 2.405810E-07 | 4.328954E-07 | 8.469618E-07 | 6.747030E-07

Table 6. Errors comparing with the previous iteration; Linearized
Iterative Method

5. CONCLUSIONS

As we described in Section 1, numerical algorithms with inner-outer iterations are
often used for solving nonlinear partial differential equations. In this research, we
proposed the shooting method for the inner iteration. Even though these method
is well known in other applications, it is not applied in the numerical solution of
nonlinear partial differential equations. The main idea in this work is based on the
alternating direction procedure. It is assumed that we obtain a better approximation
after each iteration. Convergence analysis for perturbed linear and nonlinear cases
shows that the convergence is linear.

From this study, we also found out that the efficiency of the methods may depend
on the vanishing of the fourth order partial derivatives. Hence, the numerical results
seem to imply that if all fourth order partial derivatives of the exact solution of a
nonlinear partial differential equation are zero (within discretization errors), then
the shooting finite difference scheme can yield an accurate solution in one outer
iteration.
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The linearized iterative methods are the most commonly used numerical methods for
solving nonlinear partial differential equations. In this research, we should note that
the shooting method is very well suited for a parallel computer because for each
level, either in i(z direction) or in j(y direction), their computations are totally
independent of other levels. Therefore we may obtain very high speedup. In theory,
we have an n processor machine and we have n levels of grid lines then the limit
of speedup is n, which means that if n seconds are required to obtain a result in
one processor machine, then we may obtain the same result in one second in an n
processor machine.

On the final note to this paper, multiple shooting method may be able to com-
pensate the stability problem for the shooting method.
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