• 제목/요약/키워드: partial buckling

검색결과 58건 처리시간 0.029초

Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core

  • Magnucki, Krzysztof;Jasion, Pawel;Szyc, Waclaw;Smyczynski, Mikolaj Jan
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.325-337
    • /
    • 2014
  • The strength and buckling problem of a five layer sandwich beam under axial compression or bending is presented. Two faces of the beam are thin aluminium sheets and the core is made of aluminium foam. Between the faces and the core there are two thin binding glue layers. In the paper a mathematical model of the field of displacements, which includes a share effect and a bending moment, is presented. The system of partial differential equations of equilibrium for the five layer sandwich beam is derived on the basis of the principle of stationary total potential energy. The equations are analytically solved and the critical load is obtained. For comparison reasons a finite element model of the beam is formulated. For the case of bended beam the static analysis has been performed to obtain the stress distribution across the height of the beam. For the axially compressed beam the buckling analysis was carried out to determine the buckling load and buckling shape. Moreover, experimental investigations are carried out for two beams. The comparison of the results obtained in the analytical and numerical (FEM) analysis is shown in graphs and figures. The main aim of the paper is to present an analytical model of the five layer beam and to compare the results of the theoretical, numerical and experimental analyses.

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels

  • Shen, Hui-Shen;Xiang, Y.
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.423-435
    • /
    • 2021
  • This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해 (Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse)

  • 강재훈;심현주;장경호
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

Nonlinear buckling and free vibration of curved CNTs by doublet mechanics

  • Eltaher, Mohamed A.;Mohamed, Nazira;Mohamed, Salwa A.
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.213-226
    • /
    • 2020
  • In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.

Parameters study on lateral buckling of submarine PIP pipelines

  • Zhang, Xinhu;Duan, Menglan;Wang, Yingying;Li, Tongtong
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.99-115
    • /
    • 2016
  • In meeting the technical needs for deepwater conditions and overcoming the shortfalls of single-layer pipes for deepwater applications, pipe-in-pipe (PIP) systems have been developed. While, for PIP pipelines directly laid on the seabed or with partial embedment, one of the primary service risks is lateral buckling. The critical axial force is a key factor governing the global lateral buckling response that has been paid much more attention. It is influenced by global imperfections, submerged weight, stiffness, pipe-soil interaction characteristics, et al. In this study, Finite Element Models for imperfect PIP systems are established on the basis of 3D beam element and tube-to-tube element in Abaqus. A parameter study was conducted to investigate the effects of these parameters on the critical axial force and post-buckling forms. These parameters include structural parameters such as imperfections, clearance, and bulkhead spacing, pipe/soil interaction parameter, for instance, axial and lateral friction properties between pipeline and seabed, and load parameter submerged weight. Python as a programming language is been used to realize parametric modeling in Abaqus. Some conclusions are obtained which can provide a guide for the design of PIP pipelines.

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM

  • Yaghoobi, Hessameddin;Valipour, Mohammad Sadegh;Fereidoon, Abdolhossein;Khoshnevisrad, Pooria
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.753-776
    • /
    • 2014
  • In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.145-161
    • /
    • 2023
  • This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan;Tong Zhang;Ting Zheng;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.459-474
    • /
    • 2024
  • Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.