• Title/Summary/Keyword: parameter ideal

Search Result 154, Processing Time 0.025 seconds

Thermodynamic Correlations for Predicting the Properties of Coal-Tar Fractions and Process Analysys (석탄 유분에 대한 물성예측식 개발 및 공정에 대한 연구)

  • Oh, Jun Sung;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.458-466
    • /
    • 2005
  • Full-scale utilizations of batch separation process often require knowledge about thermodynamics and correlation techniques of physical properties of complex mixture consisting of a great number of many unknown components. Various empirical correlations have been proposed to predict the physical properties mostly about the pseudocomponent of petroleum. In this study, one parameter correlations are developed for the calculations of the critical physical properties and ideal heat capacity of the pseudo-component of coal tar fractions. Developed model can provide a tool for the design and operations for the batch distillation of coal tar mixture.

SOP Package Modeling for RFIC (SOP RFIC 패키지 모델링)

  • 이동훈;어영선
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.18-28
    • /
    • 1999
  • A new equivalent circuit model of package (SOP, Small Outline Package) is presented for designing radio frequency integrated circuits (RFIC). In the RF region, the paddle of a package does not work as an ideal ground. Further parasitics due to both coupling and loss have a substantial effect on MMIC. The equivalent circuit model and parameter extraction methodology for the electrical characteristics of the package are described by illustrating the SOP type packages. The accuracy of the model is evaluated by comparing the s-parameters of the commercial full-wave solver and those of HSPICE simulation with the circuit model. The proposed model shows an excellent agreement with full-wave analysis up to about 8GHz.

  • PDF

Physics-based Diagnostics on Gear Faults Using Transmission Error (전달오차를 이용한 물리기반(Physics-Based) 기어고장진단 이론연구)

  • Park, Jungho;Ha, Jongmoon;Choi, Jooho;Park, Sungho;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.505-508
    • /
    • 2014
  • Transmission error (TE) is defined as "the angular difference between the ideal output shaft position and actual position". As TE is one of the major source of the noise and vibration of gears, it is originally studied with relation of the noise and vibration of the gears. However, recently, with the relation of mesh stiffness, TE has been studied for fault detection of spur gear sets. This paper presents a physics-based theory on fault diagnostics of a planetary gear using transmission error. After constructing the lumped parameter model using DAFUL, multi-body dynamics software, we developed a methodology to diagnose the faults of the planetary gear including phase calculation, signal processing. Using developed methodology, we could conclude that TE could be a good signal for fault diagnostics of a planetary gear.

  • PDF

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.

Properties of Sodium Dodecyl Sulfate / Triton X-100 Mixed Micelle

  • Park, Joon-Woo;Chung, Myung-Ae;Choi, Kyung-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.437-442
    • /
    • 1989
  • The cmc's of sodium dodecyl sulfate (SDS)/Triton X-100 surfactant mixtures were determined by surface tension measurement at various surfactant compositions. The cmc values were lower than those predicted from ideal mixture. The regular solution theory was applied to calculate the interaction parameter, micellar composition, and the activity coefficients of surfactants in the mixed micelle. The interaction parameter (${\beta}$) was - 2.1. The nonideality arised largely from decreased activity of SDS in the mixed micelle. The mean aggregation numbers (${\bar{n}}$) and micropolarity of hydrocarbon region of the mixed micelles were determined by luminescence probe techniques. The total aggregation number (${\bar{n}}_{SDS}+{\bar{n}}_{TX}$) in mixed micelles showed little dependency on the composition of the micelle. The apparent dielectric constant of the hydrocarbon region of the micelle vs micellar composition plot showed positive deviation from linearity. Emission and emission quenching of excited tris(2,2'-bipyridine)ruthenium(Ⅱ) cation, $(Ru(bpy)_3^{2+})$, by methylviologen ($MV^{2+}$) were also investigated in the mixed micellar solutions. The quenching rate was lowest when the mole fraction of SDS in the surfactant mixtures (${\alpha}_{SDS}$) is about 0.25 and highest at ${\alpha}_{SDS}$ = 0.85. This was explained in terms of combined effects of binding of the cations with the micelle and mobility of the bound cations on the surface of the micelles.

Effect of Initial Value Setting on Convergence Characteristics and Margin of Step Parameters in an Adaptive Ultrasonic Beamforming System using LMS Algorithm (LMS 알고리즘을 이용하는 적응형 초음파 빔포밍 시스템에서 초기치 설정이 수렴 특성과 스텝 파라미터의 여유도에 미치는 영향)

  • Kwang-Chol Chae;Ki-Ryang Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.241-250
    • /
    • 2023
  • In this paper, when using the LMS algorithm for adaptive ultrasonic beamforming system, the effect of initial value setting on the margin of step parameters was studied. To this end, quasi-ideal beams, rotational beams with arbitrarily set beam widths were used as examples. In the numerical simulations, an arbitrary initial value(the number of sound sources fixed to any number) was set in the ultrasonic beamforming system, and the margin of the step parameter and convergence characteristics thereof were compared.

A Study on vibration suppression of dual inertia system using controlling Parameter $\alpha$ of PID controller with 2-degree of freedom (2자유도 PID 제어기의 파라미터 $\alpha$ 추종을 이용한 2관성 시스템의 진동억제)

  • 박재현;추연규;김현덕;박연식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.506-510
    • /
    • 2004
  • A torque transmission system composed of several gears and couplings is flexible. In order to get an exact response of motor, the torsional vibration due to an unexpected change of motor speed must be suppressed. Therefore, it is very important that motor control suppress vibration. Various methods to control it including dual inertia system are proposed. Specially, the method of vibration suppression is that vibration can be suppressed to fee㏈ack the estimated torsion torque via the disturbance observer filter being of normal filter. The suitable Proportional controller and coefficient parameter can be designed using CDM and the torsional vibration also be suppressed, but it has a low degree of adaptability to disturbance. The PID controller can be designed easily, but makes the excessive overshoot and oscillation for system response in the early period. To resolve these problems, simple and practical PID controller with two degree of freedom is proposed recently that it ran improve performance of obeying the reference unconcerned in any disturbance by changing the proportional gain by two degree of freedom parameter. But it has also the defect that parameter a must be changed to obtain the ideal Proportional parameter. On this paper, we design the controller which automatically adjusts parameter u using fuzzy Algorithm to overcome such defects. Also, we compare the proposed method with established one and evaluate them to confirm performance of the designed controller.

  • PDF

Dynamic Slot Allocation Algorithm for Efficient Transmission of VBR Services in Wireless ATM Networks (무선 ATM 망에서 VBR 서비스의 효율적인 전송을 위한 동적 슬롯 할당 알고리즘)

  • Ahn, Kye-Hyun;Park, Byoung-Joo;Baek, Seung-Kwon;Kim, Eung-Bae;Kim, Young-Chon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.30-40
    • /
    • 2001
  • In this paper, we propose a dynamic slot allocation algorithm for efficient transmission of VBR services in wireless ATM networks. The proposed algorithm is based on a hybrid dynamic parameter(DP) control which combines the strength of in-band control and out-of-band control by considering the variation characteristics of buffer length in distributed mobile terminals. This algorithm consists of four sub-algorithms: dynamic parameter determination algorithm, dynamic parameter transmission algorithm, estimation algorithm of the number of request slots, and prorated-allocation algorithm. As the proposed allocation algorithm based on the hybrid DP control scheme can offer nearly precise MAC level estimations of the requirements for each VBR, the algorithm makes it possible to obtain ideal allocation efficiency. The allocation efficiency of the algorithm is shown by numerical analysis. Simulation results show that the proposed algorithm has better performance than conventional schemes in terms of allocation efficiency, delay and cell loss ratio under VBR traffic.

  • PDF

A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra (광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구)

  • Park, Jun-Bum;Kang, Chan-Hoe;Kim, Kyung-Su;Choung, Joon-Mo;Yoo, Chang-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.