• Title/Summary/Keyword: parallel processing inverter

Search Result 9, Processing Time 0.02 seconds

A Study on Parallel Operation Between Inverter System and Utility Line (인버터 시스템과 상용 전력 계통과의 병렬 운전에 관한 연구)

  • 천희영;박귀태;유지윤;안호균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.369-378
    • /
    • 1992
  • This paper proposes a utility parallel processing inverter system, which consists of a voltage source PWM inverter, isolation transformer and a reactor linking the inverter to utility line. This system realizes following functions : (1) voltage phase frequency and amplitude synchronization between inverter and utility line at stand-alone mode. (2) current phase synchronization between inverter and load at parallel mode. Therefore, despite sudden increase in load current over setting point at stand-alone mode, inverter system can be transferred into parallel mode immediately without transient current. Furthermore, high frequency(18KHz) PWM control and sinusoidal filtering improve the inverter output waveform by eliminating high order harmonic components as well as low order. As a switching device, IGBT is used for high frequency switching and large current capacity.

  • PDF

General Digital Fuzzy Logic Controller Design For Resonant Inverter (공진형 인버터를 위한 범용 퍼지 논리 제어기 설계)

  • 김태언;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • Induction heating system is time varying system around curie point. So, it has many troubles which are system shut down and change the load impedance. In this paper has been designed the parallel resonant inverter which controlling the constant power and tracking the load resonant frequency with PLL is possible, in order to minimize switching losses and solve it's many troubles. The current full-bridge type parallel resonant inverter of an induction heating system was composed of IGBT in switching device. For regulating the output power of an induction heating system, the Fuzzy logic controller is used. The Fuzzy controller makes the control signal for a stable power regulating control and when reference is changed, it is superior to adaptability. It has been evaluated a stable behavior for a noise with switching and a load disturbance.

  • PDF

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).

A Parallel Processing Uninterruptible Power Supply for Sudden Voltage Fluctuation for Computer Applications

  • Lee, Su-Won;Ko, Sung-Hun;Lee, Seong-Ryong;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.287-289
    • /
    • 2009
  • This paper deals with a parallel processing uninterruptible power supply (UPS) for sudden voltage fluctuation in computer applications to integrate power quality improvement, load voltage stabilization and UPS. To reduce the complexity, cost and number of power conversions, which results in higher efficiency, only one voltage-controlled voltage source inverter (VCVSI) is used. The system provides sinusoidal voltage at the fundamental value of 220V/60Hz for the load during abnormal utility power conditions or grid failure. Also, the system can be operated to mitigate the harmonic current and voltage demand from nonlinear loads and provide voltage stabilization for loads when sudden voltage fluctuation occur, such as sag and swell. System operation simulation demonstrates that the system protects against outages caused by abnormal utility power conditions and sudden voltage fluctuations and changes.

  • PDF

Circuit Design of Parallel Power Operation Equipment for Peak Power Reduction (상전원의 피크치 전력 감소를 위한 전력병합장치 회로설계)

  • Yang, Jaesoo;Kim, Donghan;Kim, ManDo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.273-278
    • /
    • 2014
  • Recent use of electricity during peak hours electricity supply-demand imbalance is inevitable that limit power use force. Therefore, in this paper, a circuit of parallel power operation equipment for peak power reduction which saves the power to electricity storage device during the non-peak power time and supply from the storage power during the expected power shortages time is designed Through this circuitry, the peak power of the commercial power supply with the parallel operation and connection of the commercial power supply and the power supply of the inverter from electricity storage that is a key feature of PRS(Peak power Reduction System) can be controlled. In addition, in order to increase the efficiency, a Transless Power Circuit DC-AC inverter is developed. Moreover, a variable impedance control is applied to the storage of electric power of an Uninterruptible Power Supply associated with a commercial power source.

Design of a Low-Power Parallel Multiplier Using Low-Swing Technique (저 전압 스윙 기술을 이용한 저 전력 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to VDD-2VTH. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we proposed a low-power 16$\times$16 bit parallel multiplier. The proposed circuits are designed with Samsung 0.35$\mu$m standard CMOS process at a 3.3V supply voltage. The validity and effectiveness are verified through the HSPICE simulation.. Compared to the previous works, this circuit can reduce the power consumption rate of 17.3% and the power-delay product of 16.5%.

A New Start-up Method for a Load Commutated Inverter for Large Synchronous Generator of Gas-Turbine

  • An, Hyunsung;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.201-210
    • /
    • 2018
  • This paper proposes a new start-up method for a load commutated inverter (LCI) in a large synchronous gas-turbine generator. The initial rotor position for start-up torque is detected by the proposed initial angle detector, which consists of an integrator and a phase-locked loop. The initial rotor position is accurately detected within 150ms, and the angle difference between the real position and the detected position is less than 1%. The LCI system operates in two modes (forced commutation mode and natural commutation mode) according to operating speed range. The proposed controllers include a forced commutation controller for the low-speed range, a PI speed controller and a PI current controller, where the forced commutation controller is connected to the current controller in parallel. The current controller is modeled by Matlab/Simulink, where a six-pulse delay of the thyristor and a processing delay are considered by using a zero-order hold. The performance of the proposed start-up method is evaluated in Matlab/Psim at standstill and at low speed. To verify the feasibility of the method, a 5kVA LCI system prototype is implemented, and the proposed initial angle detector and the system performance are confirmed by experimental results from standstill to 900rpm.

Design of a TIQ Based CMOS A/D Converter for Real Time DSP (실시간 디지털 신호처리를 위한 TIQ A/D 변환기 설계)

  • Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • This paper presents a CMOS TIQ flash A/D converter which operates very fast compared to other types of A/D converters due to its parallel architecture. The output resolution of designed A/D converter is 6-bit. In order to reduce the power consumption and chip area of conventional flash A/D converter, TIQ based flash A/D converter is proposed, which uses the advantage of the structure of CMOS transistors. The length and width of transistors of TIQ were determined with HSPICE simulation. To speed up the ultra-high speed flash A/D converter, the Fat Tree Encoder technique is used. The TIQ A/D converter was designed with full custom method. The chip's maximum power consumption was 38.45mW at 1.8V, and the operating speed of simulation was 2.7 GSPS.

  • PDF

Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer (부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터)

  • 김용주;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF