• 제목/요약/키워드: parallel kinematics

검색결과 137건 처리시간 0.028초

2단 평행기구 로봇 암의 실시간 순방향 기구학 해석 (Real-time direct kinematics of a double parallel robot arm)

  • 이민기;박근우
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.144-153
    • /
    • 1997
  • The determination of the direct kinematics of the parallel mechanism is a difficult problem but has to be solved for any practical use. This paper presents the efficient formulation of the direct kinematics for double parallel robot arm. The robot arm consists of two parallel mechanism, which generate positional and orientational motions, respectively. These motions are decoupled by a passive central axis which is composed of four revolute joints and one prismatic joint. For a set of given lengths of linear actuators, the direct kinematics will find the joint displacements of th central axis from geometric constraints in each parallel mechanism. Then the joint displacements will be converted into the position and the orientation of the end effector of the robot arm. The proposed formulation is decoupled and compacted so that it will be implemented as a real-time direct kinematics. With the proposed formulation, we analyze the motion of the double parallel robot and show its characteristics. Specially, we investigate the workspace in terms of positional space as well as orientational space.

MEURAL NETWORK을 이용한 병렬매니플레이터의 순기구학 해석 (Forward Kinematics Analysis of a Parallel Manipulator Using Neural Network)

  • 이제섭;최병오;조택동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.224-228
    • /
    • 2000
  • In this paper, the kinematics of the new type of parallel manipulator is studied, and neural network is applied to solve the forward kinematics problem. The parallel manipulator, called a Stewart platform, has an easy and unique solution about the inverse kinematics, however the forward kinematics is difficult to get the solution because of the lack of an efficient algorithm due to its highly nonlinearity. This paper proposes the neural network scheme as an alternative Newton-Raphson method. The neural network is found to improve its accuracy by adjusting the offset of the result obtained.

  • PDF

구속조건(사면체)을 사용한 6자유도 병렬 매니퓰레이터의 정기구학의 단순화 해석 (Simplex Analysis of the Forward Kinematics of 6-Degree-of-Freedom Parallel Manipulators Using Constraints with the Closed-loop Kinematics(Tetrahedron))

  • 송세경;권동수
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.559-567
    • /
    • 2000
  • This paper proposes simple and practical methods in order to overcome complex formulation and heavy computational burden of the forward kinematics of 6 앨 3-6 type parallel manipulators. Three ap-proaches for the forward kinematics are presented : one extra sensor a modified structure and novel numerical method. The proposed methods are applied to the forward kinematics of a new 6 앨 parallel manipulator with special geometry that has three internal links three external links and a moving platform of a cone shape. The proposed methods use three tetrahedrons for finding the position and orientation vector of the moving platform. The main advantages of the appraches using tetrahedrons are to abbreviate the formulation to easily find so-lutions of the forward kinematics and to be able to practically control of the manipulator in real time.

  • PDF

신경망을 이용한 공작기계 병렬 매니퓰레이터의 기구학 특성 분석 (Analysis on Kinematic Characteristics of a Machine Tool Parallel Manipulator Using Neural Network)

  • 이제섭;고준빈
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.1-7
    • /
    • 2008
  • This paper describes the kinematics which is a new type of parallel manipulator, and the neural network is applied to solving the forward kinematics problem. The parallel manipulator called it as a Stewart platform has an easy and unique solution about the inverse kinematics. However, the forward kinematics is difficult to get a solution because of the lack of an efficient algorithm caused by its highly nonlinearity. This paper proposes the neural network scheme of an Newton-Raphson method alternatively. It is found that the neural network can be improved its accuracy by adjusting the offset of the obtained result.

2개의 자유도를 가진 병렬 매니퓰레이터의 기구학 해석 (Kinematics Analysis of a 2-DOF Parallel Manipulator)

  • 이종규;이상룡;이춘영;양승한
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.64-71
    • /
    • 2012
  • In this paper, a parallel manipulator is comprised of two sliders and four links. Sliders execute a linear reciprocating motion depending on parallel guides and make the connected links rotate. A couple of links connected by sliders do coupling motion. The end-effector called a link tip has orientation angle. Through the kinematics analysis of this manipulator, we found displacement, velocity and acceleration using direct and inverse kinematics. We used equations that derived from this analysis and determined five constraint conditions. These conditions had much to do with rotation states of links, the relative relation of link length and coupling motion state. To verify those, we suggest a new algorithm regarding constraint conditions of a manipulator. With the result which performed the algorithm, we found out that operation range of coupled links was limited by relative relation of link length and that manipulator was not able to carry out a series of link motion, in case of being the link vertical between two parallel guides.

기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석 (The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion)

  • 배형섭;백재호;박명관
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

간단한 정기구학을 갖는 평면운동용 병렬 매니플레이터의 구동영역 및 기구학적 특성 (Workspace and Kinematical Characteristics of Planar Parallel Manipulator with Simple)

  • 최기봉
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.97-104
    • /
    • 2003
  • This paper proposes a new parallel manipulator fur plane motion, and then discusses on the workspace and kinematical characteristics of the manipulator. The conventional planar parallel manipulators have some disadvantages which are complex non-closed type direct kinematics, workspaces containing useless voids, and concave type border tines of workspaces. The proposed planar parallel manipulator overcomes the above disadvantages, that is, the manipulator has simple closed type direct kinematics, a void-free workspace, and a convex type borderline of a workspace. This paper shows the simulation result of the workspace as well as performances indices using a homogeneous inverse Jacobian.

병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계 (Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator)

  • 홍성일
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

Kinematic Analysis and Optimal Design of 3-PPR Planar Parallel Manipulator

  • Park, Kee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.528-537
    • /
    • 2003
  • This paper proposes a 3-PPR planar parallel manipulator, which consists of three active prismatic Joints, three passive prismatic joints, and three passive rotational joints. The analysis of the kinematics and the optimal design of the manipulator are also discussed. The proposed manipulator has the advantages of the closed type of direct kinematics and a void-free workspace with a convex type of borderline. For the kinematic analysis of the proposed manipulator, the direct kinematics, the inverse kinematics, and the inverse Jacobian of the manipulator are derived. After the rotational limits and the workspaces of the manipulator are investigated, the workspace of the manipulator is simulated. In addition, for the optimal design of the manipulator, the performance indices of the manipulator are investigated, and then an optimal design procedure Is carried out using Min-Max theory. Finally. one example using the optimal design is presented.