• Title/Summary/Keyword: parallel kinematic robot

Search Result 47, Processing Time 0.027 seconds

Kinematic Calibration of Delta Parallel Robot Using Laser Tracker (레이저 트래커를 이용한 Delta 병렬로봇의 기구학적 보정)

  • Jeong, Sung-Hun;Choi, Jun-Woo;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.947-952
    • /
    • 2021
  • In this paper, the simplified kinematic error model for Delta parallel robot is presented, which can enable the analytical forward kinematics essentially for kinematic calibration calculations instead of the numerical one. The simplified kinematic error model is proposed and the forward kinematics including the error parameters is analytically derived. The kinematic calibration algorithm of the Delta parallel robot with 90 degree arrangement using laser tracker and the experiment result are presented.

The Effects of Design Parameters on the Mechanical Precision of an End Effector on a Parallel Kinematic Robot (병렬로봇의 설계공차 설정에 따른 기계적 정밀도의 영향 분석)

  • Park, Chanhun;Kim, Doohyung;Do, Hyunmin;Choi, Taeyong;Park, Dongil;Kim, Byungin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.847-852
    • /
    • 2016
  • In this paper, important design parameters for parallel kinematic robots are defined, paying special attention to machining errors which may cause kinematic errors at the end effector of a robot. The kinematic effects caused by each design parameter, as well as their upper/lower limits, are analyzed here. To do so, we have developed a novel software program to compute kinematic errors by considering its defined design parameters. With this program, roboticists designing parallel kinematic robots can understand the important design parameters for which upper/lower allowances have to be strictly controlled in the design process. This tactic can be used for the design of high-speed, parallel kinematic robots to reduce the design/manufacturing costs and increase kinematic precision.

Inverse Kinematic Analysis of a Three Dimensional Binary Robot Manipulator (3차원 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Rhee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.205-212
    • /
    • 1999
  • A three dimensional binary parallel robot manipulator uses actuators which have only two stable states and its structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has some advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators it is very difficult to solve and inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem of three dimensional binary parallel robot manipulator using a backbone curve when the number of actuators are too much. We first derive the coordinate transformations associated with a three degree of freedom in-parallel actuated robot manipulator. The backbone curve is generated optimally by considering the maximum roll and pitch angles of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criterion.

  • PDF

Study on the Structural Analysis of Small Size Industrial High Speed Parallel Robot (산업용 소형 고속병렬로봇의 구조해석에 관한 연구)

  • Park, Chanhun;Do, Hyun Min;Choi, Taeyong;Kim, ByungIn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.923-930
    • /
    • 2013
  • These days, the interests on the high speed handling robots are increasing because it is important to get down the unit cost of production to get the price competitiveness. The parallel kinematic mechanism is more suitable to implement the high speed robot system as well known. The moving parts of the high speed parallel robot have to be designed for light weight. But the vibration motion is induced by the light weight links because they drive in high acceleration and deceleration. In this reason, the structural analysis of the high speed parallel kinematic robot is very important in the design process. In this paper, the study on the structural analysis of a high speed parallel robot has been done and the research results will be introduced.

The Study of Kinematic Analysis and Control by Optimum Design of Redundantly Actuated Parallel Robot (여유구동형 병렬 로봇의 최적설계를 통한 기구학적 분석 및 제어에 관한 연구)

  • Kim, Byeong-Soo;Lee, Jeh-Won;Kim, Young-Suk;Kim, Jin-Dae;Lee, Hyuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.426-432
    • /
    • 2012
  • In this study, kinematic analysis of forward kinematic, inverse kinematic and jacobian for 6-bar parallel robot was analyzed. In order to analyze the maximum workspace of 6-bar parallel robot, maximum revolution range of active joint was calculated. Also, to analyze forward dynamics and inverse dynamics of 6-bar parallel robot, recurdyn and simmechanics was utilized. Using a PI controller and Feedforward controller make an experiment with square motion of end_effector. The reference value of active joint and trace of end_effector were compared with actual experimental value.

Indentification and Compensation of Robot Kinematic Parameters for Positioning Accuracy Improvement

  • Kim, Doo-Hyeong;Guk, Geum-Hwan
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.81-92
    • /
    • 1989
  • This paper presents a simple identification method of the actual kinematic parameters for the robot with parallel joints. It is known that Denavit-Hartenberg's coordinate system is not useful for nearly parallel joints. In this paper, the coordinate frames are reassigned to model the kinematic parameter between nearly parallel joints by four parameters. The proposed identification method uses a straight ruler about 1m long. A robot hand is placed by using a teaching pendant at the prescribed points on the ruler, and corresponding error function is defined. The identified kinematic parameters which make the error function zero are obtained by iterative least square error method based on the singular value decomposition. In the compensation of joint angles, only the position is considered because the usual applications of robot do not require a precise orientation control.

  • PDF

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF

The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator (병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석)

  • Park, Chanhun;Park, DongIl;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.