• Title/Summary/Keyword: parallel compression algorithm

Search Result 37, Processing Time 0.024 seconds

An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

  • Jin, Ran;Chen, Gang;Tung, Anthony K.H.;Shou, Lidan;Ooi, Beng Chin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2761-2781
    • /
    • 2018
  • With the continuous growth of data size and the use of compression technology, data reduction has great research value and practical significance. Aiming at the shortcomings of the existing semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm, and designs a method of bidirectional order selection based on interval partitioning, which named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress Algorithm). In order to further improve the speed of the algorithm, we propose a parallel optimization iterative semantic compression algorithm using GPU (POICAG) and an optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid experiments are carried out on four kinds of datasets, which fully verified the efficiency of the proposed algorithm.

The Cooperative Parallel X-Match Data Compression Algorithm (협동 병렬 X-Match 데이타 압축 알고리즘)

  • 윤상균
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.586-594
    • /
    • 2003
  • X-Match algorithm is a lossless compression algorithm suitable for hardware implementation owing to its simplicity. It can compress 32 bits per clock cycle and is suitable for real time compression. However, as the bus width increases 64-bit, the compression unit also need to increase. This paper proposes the cooperative parallel X-Match (X-MatchCP) algorithm, which improves the compression speed by performing the two X-Match algorithms in parallel. It searches the all dictionary for two words, combines the compression codes of two words generated by parallel X-Match compression and outputs the combined code while the previous parallel X-Match algorithm searches an individual dictionary. The compression ratio in X-MatchCP is almost the same as in X-Match. X-MatchCP algorithm is described and simulated by Verilog hardware description language.

Proposal for Decoding-Compatible Parallel Deflate Algorithm by Inserting Control Header Composed of Non-Compressed Blocks (비 압축 블록으로 구성된 제어 헤더 삽입을 통한 압축 해제 호환성 있는 병렬 처리 Deflate 알고리즘 제안)

  • Kim Jung Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.207-216
    • /
    • 2023
  • For decoding-compatible parallel Deflate algorithm, this study proposed a new method of the control header being made in such a way that essential information for parallel compression and decompression are stored in the Disposed Bit Area (DBA) of the non-compression block and being inserted into the compressed blocks. Through this, parallel compression and decompression are possible while maintaining perfect compatibility with the existing decoder. After applying this method, the compression time was reduced by up to 71.2% compared to the sequential processing method, and the parallel decompression time was reduced by up to 65.7%. In particular, it is well known that parallel decompression is impossible due to the structural limitations of the Deflate algorithm. However, the decoder equipped with the proposed method enables high-speed parallel decompression at the algorithm level and maintains compatibility, so that parallelly compressed data can be decoded normally by existing decoder programs.

APBT-JPEG Image Coding Based on GPU

  • Wang, Chengyou;Shan, Rongyang;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1457-1470
    • /
    • 2015
  • In wireless multimedia sensor networks (WMSN), the latency of transmission is an increasingly problem. With the improvement of resolution, the time cost in image and video compression is more and more, which seriously affects the real-time of WMSN. In JPEG system, the core of the system is DCT, but DCT-JPEG is not the best choice. Block-based DCT transform coding has serious blocking artifacts when the image is highly compressed at low bit rates. APBT is used in this paper to solve that problem, but APBT does not have a fast algorithm. In this paper, we analyze the structure in JPEG and propose a parallel framework to speed up the algorithm of JPEG on GPU. And we use all phase biorthogonal transform (APBT) to replace the discrete cosine transform (DCT) for the better performance of reconstructed image. Therefore, parallel APBT-JPEG is proposed to solve the real-time of WMSN and the blocking artifacts in DCT-JPEG in this paper. We use the CUDA toolkit based on GPU which is released by NVIDIA to design the parallel algorithm of APBT-JPEG. Experimental results show that the maximum speedup ratio of parallel algorithm of APBT-JPEG can reach more than 100 times with a very low version GPU, compared with conventional serial APBT-JPEG. And the reconstructed image using the proposed algorithm has better performance than the DCT-JPEG in terms of objective quality and subjective effect. The proposed parallel algorithm based on GPU of APBT also can be used in image compression, video compression, the edge detection and some other fields of image processing.

Interfacing the Visual Projector to PC using the Parallel Port (PC 병렬 포트를 이용한 실물화상기 인터페이스)

  • 이재혁
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.173-176
    • /
    • 2000
  • In this study, a new multimedia data converter is proposed. Also the PC interfacing met hod using the parallel port of is suggested. The image compression/decompression is based on the JPEG algorithm, which is widely used for an effective compression in the image processing industry. The suggested interfacing method is based on the IEEE1284 and IEEE1284.3 protocol, which is a standard in the PC's parallel port interface.

  • PDF

Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

  • Li, Changguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3543-3557
    • /
    • 2017
  • Compression is a very important technique for remotely sensed hyperspectral images. The lossless compression based on the recursive least square (RLS), which eliminates hyperspectral images' redundancy using both spatial and spectral correlations, is an extremely powerful tool for this purpose, but the relatively high computational complexity limits its application to time-critical scenarios. In order to improve the computational efficiency of the algorithm, we optimize its serial version and develop a new parallel implementation on graphics processing units (GPUs). Namely, an optimized recursive least square based on optimal number of prediction bands is introduced firstly. Then we use this approach as a case study to illustrate the advantages and potential challenges of applying GPU parallel optimization principles to the considered problem. The proposed parallel method properly exploits the low-level architecture of GPUs and has been carried out using the compute unified device architecture (CUDA). The GPU parallel implementation is compared with the serial implementation on CPU. Experimental results indicate remarkable acceleration factors and real-time performance, while retaining exactly the same bit rate with regard to the serial version of the compressor.

Novel Parallel Approach for SIFT Algorithm Implementation

  • Le, Tran Su;Lee, Jong-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.298-306
    • /
    • 2013
  • The scale invariant feature transform (SIFT) is an effective algorithm used in object recognition, panorama stitching, and image matching. However, due to its complexity, real-time processing is difficult to achieve with current software approaches. The increasing availability of parallel computers makes parallelizing these tasks an attractive approach. This paper proposes a novel parallel approach for SIFT algorithm implementation using a block filtering technique in a Gaussian convolution process on the SIMD Pixel Processor. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and input/output capabilities of the processor, which results in a system that can perform real-time image and video compression. We apply this implementation to images and measure the effectiveness of such an approach. Experimental simulation results indicate that the proposed method is capable of real-time applications, and the result of our parallel approach is outstanding in terms of the processing performance.

All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU

  • Shan, Rongyang;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4467-4486
    • /
    • 2016
  • Discrete cosine transform (DCT) based JPEG standard significantly improves the coding efficiency of image compression, but it is unacceptable event in serious blocking artifacts at low bit rate and low efficiency of high-definition image. In the light of all phase digital filtering theory, this paper proposes a novel transform based on discrete sine transform (DST), which is called all phase discrete sine biorthogonal transform (APDSBT). Applying APDSBT to JPEG scheme, the blocking artifacts are reduced significantly. The reconstructed image of APDSBT-JPEG is better than that of DCT-JPEG in terms of objective quality and subjective effect. For improving the efficiency of JPEG coding, the structure of JPEG is analyzed. We analyze key factors in design and evaluation of JPEG compression on the massive parallel graphics processing units (GPUs) using the compute unified device architecture (CUDA) programming model. Experimental results show that the maximum speedup ratio of parallel algorithm of APDSBT-JPEG can reach more than 100 times with a very low version GPU. Some new parallel strategies are illustrated in this paper for improving the performance of parallel algorithm. With the optimal strategy, the efficiency can be improved over 10%.

An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm (유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구)

  • 김동광;조남효;차순창;조순호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.

Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

  • Choi, Do Young;Oh, Jung Hwan;Kim, Ji Kwang;Lee, Seung Eun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4648-4663
    • /
    • 2020
  • This paper proposes the Lempel-Ziv 4(LZ4) compression accelerator optimized for scale-out servers in data centers. In order to reduce CPU loads caused by compression, we propose an accelerator solution and implement the accelerator on an Field Programmable Gate Array(FPGA) as heterogeneous computing. The LZ4 compression hardware accelerator is a fully pipelined architecture and applies 16 dictionaries to enhance the parallelism for high throughput compressor. Our hardware accelerator is based on the 20-stage pipeline and dictionary architecture, highly customized to LZ4 compression algorithm and parallel hardware implementation. Proposing dictionary architecture allows achieving high throughput by comparing input sequences in multiple dictionaries simultaneously compared to a single dictionary. The experimental results provide the high throughput with intensively optimized in the FPGA. Additionally, we compare our implementation to CPU implementation results of LZ4 to provide insights on FPGA-based data centers. The proposed accelerator achieves the compression throughput of 639MB/s with fine parallelism to be deployed into scale-out servers. This approach enables the low power Intel Atom processor to realize the Hadoop storage along with the compression accelerator.