
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, Apr. 2015                                            1457 
Copyright ⓒ 2015 KSII 

APBT-JPEG Image Coding Based on GPU 
 

Chengyou Wang*, Rongyang Shan and Xiao Zhou 
School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 

Weihai 264209, China 
[e-mail: wangchengyou@sdu.edu.cn, sdusry@163.com, zhouxiao@sdu.edu.cn] 

*Corresponding author: Chengyou Wang 
 

Received December 25, 2014; revised February 7, 2015; accepted March 4, 2015;  
published April 30, 2015 

 

 

Abstract 
 

In wireless multimedia sensor networks (WMSN), the latency of transmission is an 
increasingly problem. With the improvement of resolution, the time cost in image and video 
compression is more and more, which seriously affects the real-time of WMSN. In JPEG 
system, the core of the system is DCT, but DCT-JPEG is not the best choice. Block-based 
DCT transform coding has serious blocking artifacts when the image is highly compressed at 
low bit rates. APBT is used in this paper to solve that problem, but APBT does not have a fast 
algorithm. In this paper, we analyze the structure in JPEG and propose a parallel framework to 
speed up the algorithm of JPEG on GPU. And we use all phase biorthogonal transform 
(APBT) to replace the discrete cosine transform (DCT) for the better performance of 
reconstructed image. Therefore, parallel APBT-JPEG is proposed to solve the real-time of 
WMSN and the blocking artifacts in DCT-JPEG in this paper. We use the CUDA toolkit based 
on GPU which is released by NVIDIA to design the parallel algorithm of APBT-JPEG. 
Experimental results show that the maximum speedup ratio of parallel algorithm of 
APBT-JPEG can reach more than 100 times with a very low version GPU, compared with 
conventional serial APBT-JPEG. And the reconstructed image using the proposed algorithm 
has better performance than the DCT-JPEG in terms of objective quality and subjective effect. 
The proposed parallel algorithm based on GPU of APBT also can be used in image 
compression, video compression, the edge detection and some other fields of image 
processing. 
 
 
Keywords: Parallel computing, GPU, image coding, all phase biorthogonal transform 
(APBT), discrete cosine transform (DCT) 

 
This work was supported by the promotive research fund for excellent young and middle-aged scientists of 
Shandong Province, China (Grant No. BS2013DX022) and the National Natural Science Foundation of China 
(Grant No. 61201371). 
 
http://dx.doi.org/10.3837/tiis.2015.04.011                                                                                  ISSN : 1976-7277 



1458                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

1. Introduction 

Image compression has become an important research area for many years due to increasing 
demand on transfer and storage of data. The most widely used and successful image coding 
standard should be joint photographic experts group (JPEG) standard, also known as ITU-81 
[1] first issued in 1992. Because JPEG encoding can be implemented quickly, around 80% of 
the images on the Internet observe JPEG standard. The JPEG system mainly makes up of 
discrete cosine transform (DCT) [2] and Huffman coding, DCT has been really developed 
during the recent years, and applied in the international standards for image and video 
compression, like JPEG [3], MPEG-2 [4], MPEG-4 [5], H.264/AVC [6] and H.265/HEVC [7], 
and DCT is also widely used in many other fields of image processing. DCT still takes an 
important place in image processing. With the development of orthogonal transform, DCT has 
become quite mature, and two-dimensional DCT is the core of JPEG coding. However, DCT 
is not the best choice in image coding, because block DCT transform coding has serious 
blocking artifacts when the image is highly compressed at low bit rates. The all phase 
biorthogonal transform (APBT) [8] which is based on Walsh-Hadamard transform (WHT), 
DCT and inverse discrete cosine transform (IDCT) proposed by Hou et al. is a new transform 
for image compression instead of DCT, which solves the problem of blocking artifacts in DCT, 
and APBT uses the uniform quantization step instead of the complex quantization table in 
DCT which makes APBT save the storage space of quantization table. 

In wireless multimedia sensor networks (WMSN), image compression and transmission 
[9] are widely used. When the image is collected by camera, it will be transferred on the 
internet and the source image needs to be compressed usually for reducing the occupation of 
the bandwidth. But the compression algorithm always has high time complexity and the 
real-time of WMSN is a very important issue. Parallel algorithm provides an effective way to 
improve the efficiency and real-time.  

At present, the operating frequency of processor has hit a clock rate limit at around 4 GHz, 
but for current technology, if the clock rate continues to increase, more heat and electric bill 
rather than efficiency will be got. People are not able to improve the efficiency of computation 
by improving the frequency of processor, so parallel computation becomes more and more 
popular. Some researches of parallel computing are based on many-core processors [10, 11], 
in which Yan and Zhang proposed a parallel framework to decouple motion estimation (ME) 
for different partitions on many-core processors, and compared with serial execution, their 
work achieves more than 30 and 40 times speedup for 1920×1080 and 2560×1600 video 
sequences. However, with the increasing compute capability of GPU, GPU is not only a 
graphic card, but also it is being used in the field of computing. Although GPU’s operation 
frequency is lower than CPU, GPU’s Flops (floating-point operations per second) is much 
higher than CPU, because GPU has more ALU. GPU can launch thousands of threads at the 
same time, so GPU is more suitable for parallel computing. Currently parallel computing 
based on GPU has been widely used in scientific research. 

Compute unified device architecture (CUDA) toolkit which is released by NVIDIA makes 
parallel computation based on GPU easier than before. Parallel algorithm implemented by 
CUDA can get 10 times acceleration easily than serial algorithm. CUDA and massively 
parallel GPU hardware is changing how we think about computation. No longer limited to 
performing one or a few operations at a time, CUDA programmers write programs that 
perform tens of thousands of operations simultaneously. In 2011, Tokdemir and Belkasim [12] 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1459 

used parallel DCT algorithm in data compression, and they got a satisfying result in efficiency. 
Liu and Fan [13] designed parallel program for DCT in 2012, they used parallel DCT 
algorithm in JPEG coding, and the parallel DCT algorithm gains 20 times acceleration than 
serial DCT algorithm in the experiment, but they did not make all parts of JPEG algorithm run 
on GPU. Holub and Srom [14] used GPU-accelerated DXT in low-latency network 
transmissions of HD, 2K, and 4K video in 2013. 

The system of basic JPEG based on DCT is shown in Fig. 1. The encoder mainly contains 
four parts: DCT, quantization, Zig-zag ordering and Huffman coding. At the beginning of 
JPEG coding, the source image is divided into 8×8 sub-images, then every sub-image is 
processed by DCT. After DCT, every sub-image gets an 8×8 matrix, it includes 64 DCT 
coefficients. The upper left corner coefficient is called DC coefficient, the other 63 
coefficients are AC coefficients. DC coefficient plays an important role in reconstructed image; 
AC coefficients have a low influence on reconstructed image compared with DC coefficient. 
So some AC coefficients can be dropped by quantization table for removing redundancy. The 
coefficient matrix of every sub-image, DC coefficient is coded by differential pulse code 
modulation (DPCM), and AC coefficients are put in a one-dimensional array with Zig-zag 
ordering, after that Huffman coding is used for image compression. 

Accordingly, the decoder also has four parts: Huffman decoder, inverse Zig-zag ordering, 
inverse quantization, and inverse DCT. It has the reverse order with encoder. 

 

Source Data DCT Quantizer

Inverse DCTReconstructed 
Data Dequantizer

Zig-zag Huffman Encoder 

Inverse Zig-zag

Huffman Table

Huffman Decoder

Quantization Table

 
 

Fig. 1. DCT-JPEG system 
 

JPEG can compress the source color image data (luminance component and chrominance 
component) from the different color spaces (also referred to as color model or color system) 
like RGB, YCbCr, etc. Wherein, RGB model almost includes all of the colors perceived by the 
human eye, and the RGB model is widely used in digital color. However this model is not 
suitable for graphical analysis, since the R, G and B components are highly relevant. When 
changing the brightness, the three components will be amended accordingly. Therefore, most 
of the color image compression schemes transform the highly correlated RGB color space into 
a decorrelated color space like YUV, YCbCr, etc. In JPEG system, the color space is YCbCr, 
so it is necessary to convert the RGB to YCbCr. The equation used in color space conversion is 
given by: 
 

Y 0.299R 0.587G 0.114B
Cb 0.1687R 0.3313G 0.5B 128
Cr 0.5R 0.4187G 0.0813B 128

= + +
 = − − + +
 = − − +

                                      (1) 

 

where R, G, B are the red, green and blue components in RGB color space, and Y, Cb, Cr are 
the luma component, the blue-difference and red-difference chroma components in YCbCr 
color space. 

The rest of this paper is organized as follows. Section 2 introduces CUDA. Section 3 starts 
with a brief review of DCT and APBT. Section 4 is the design of parallel algorithm of 



1460                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

APBT-JPEG system. Experimental results of the proposed method are presented in Section 5. 
Conclusions and remarks on possible further work are given finally in Section 6. 

2. CUDA 
CUDA is an easy-to-use programming interface which is added to graphics card by NVIDIA 
in 2007. C-like language is used in CUDA to design parallel program, so developers can 
rewrite the serial code which programed before in C language to parallel code. With CUDA, 
parallel code can gain higher computational efficiency than serial one. In order to get higher 
efficiency CUDA program, it is necessary to know some basic knowledge about GPU. Fig. 2 
shows that the architecture of CUDA has three main components. It contains CUDA libraries, 
CUDA runtime API and CUDA device API. 
 

GPU

CUDA Device API

CUDA Runtime API

CUDA Libraries

CUDA Application

 
 

Fig. 2. The architecture of CUDA 
 

Fig. 3 displays the programming model of CUDA. CPU could be seen as host and GPU 
should be seen as device or the co-processor of CPU which has a memory. In this system, it 
can have one host and multiple devices. Under this model, host and device work together and 
fulfill their proper function. The CPU is responsible for preparing data and driving kernel, 
while the GPU is focused on the implementation of highly threaded parallel processing tasks. 
CPU and GPU have their own memory and they cannot visit each memory directly [15]. Data 
need to be copied from host to device at the beginning of the program and copied back at the 
end of the program; it will have some latency in the CUDA application. But it will be solved in 
the future, because the CUDA toolkit will support unified memory in next version. 

HOST

Block(0,0) Block(1,0)

Block(0,1) Block(1,1)

Grid0

HOST

Grid1

Block(0,1)

Block(0,0) Block(1,0)

Block(1,1)

Thread(0,0) Thread(1,0)
Thread(0,1) Thread(1,1)

C Program Serial 
Execution

Parallel 
Kernel

Serial 
Program

Serial 
Program

Parallel 
Kernel

 
Fig. 3. CUDA program model 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1461 

After developers analyze the algorithm, they give the part of program which is needed 
parallel computing to GPU. The function which runs on GPU for parallel computing is called 
kernel. Kernel is not a complete program; it is part of CUDA programs which runs on GPU 
and is used to compute what you need. The kernel function and the serial processing in 
host-side compose a complete CUDA program (as shown in Fig. 3).These programs will be 
executed with the order of the sentences in the program. Host-side code is mainly used to 
prepare data and run the kernel on GPU. 

In CUDA application, kernel is organized as grid. Every kernel has one grid, which is made 
up of blocks, and every block has many threads. Generally, the number of threads in every 
block has the relation with GPU. There are two levels of parallelism in a kernel: parallelism 
between blocks in the grid and parallelism between threads in the block. Each thread executes 
the kernel one time according to the serial order of the instruction in the program [15]. Threads 
in the same block can communicate through shared memory, so developers would have more 
room for their program. 

3. DCT and APBT 

3.1 Discrete Cosine Transform (DCT) 
The conventional two-dimensional DCT transform is made usually by two one-dimensional 
DCT transform on row and column directions separately [1]. X  is the data of an N N×  
image block, and C  represents DCT matrix with size of N N×  respectively. After 
two-dimensional DCT transform, transform coefficients block Y  can be denoted by 

T=Y CXC ,                                                             (2) 
1 ,                                 0,  0,1, , 1,

( , )
2 (2 1)πcos ,  1,2, , 1,  0,1, , 1.

2

i j N
Ni j

i j i N j N
N N


= = −

= 
+ = − = −



 

C                     (3) 

where TC  is the transpose matrix of C . 
Since DCT is an orthogonal transform, i.e. T 1−=C C , we use 

1 T 1 1 1 T 1( ) ( ) C− − − − −= =X = C Y C C Y C C Y ,                                      (4) 
to reconstruct the image, where 1−C  is the inverse matrix of C . 

3.2 All Phase Biorthogonal Transform (APBT) 
On the basis of all phase digital filtering , three kinds of all phase biorthogonal transforms 
based on the WHT, DCT and IDCT were proposed and the matrices of APBT were deduced in 
[8]. Similar to DCT matrix, it also can be used in image compression to transform the image 
from spatial domain to frequency domain. 

Taking all phase discrete cosine biorthogonal transform (APDCBT) for example, the 
process of two-dimensional APBT is introduced as follows. X  is the data of an N N×  image 
block, and V  represents APDCBT matrix with size of N N×  respectively. After 
two-dimensional APDCBT transform, transform coefficients block Y  can be denoted by 

 
T=Y VXV ,                                                            (5) 



1462                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

( )2

,                                                              0,  0,1, , 1,
( , )

1 π π πcos csc sin ,  1,2, , 1,  0,1, , 1.

N m n m N
Nm n

mn n mnN m n N m N
N N NN

− = = −= 
  − − = − = −   

V


 

  (6) 

where TV  is the transpose matrix of V . We use 
1 1 T( )− −=X V Y V ,                                                        (7) 

to reconstruct the image, where 1−V  is the inverse matrix of V . 

4. The Design of Parallel Algorithm of APBT-JPEG System 
The important part of designing parallel program is breaking down task. These sub tasks are 
processed parallel for improving the computational efficiency. At the beginning of 
APBT-JPEG, the first step is the preprocessing of source image, which should be divided into 
8×8 sub-images, every sub-image has 64 pixels. In the conventional serial algorithm of 
APBT-JPEG, every sub-image is processed serially, and each pixel is independent of each 
other. In CUDA program model, it has two parallel levels. The first one is parallelism between 
blocks in grid, and the second one is parallelism between threads in block. Fig. 4 shows the 
mapping relation between image component and grid. The image is mapped to the grid, 
sub-images are mapped to the blocks in the grid, and pixels in each sub-image are mapped to 
the threads in the block. 

Block2
Thread1

Mapping Mapping

Block1

Block3
Block4
Block5
Block6

Block7

Image Data

Thread2
Thread3
Thread4
Thread5
Thread6

Thread64
BlockN

Grid
Block

8×8 sub-graph

 
Fig. 4. Mapping relation between image component and grid 

 
The whole task of APBT-JPEG needs to be divided into N  parts. Every part is processed 

in one block, and every block has 64 threads. If the size of the source image is not integral 
multiple of 64, it can be filled by zeros at the end of source data. 

 

64
W HN ×

= ,                                                             (8) 

 
where N  is the number of blocks in the grid, W  is the width of source image, and H  is the 
height of source image. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1463 

4.1 Parallel Algorithm of APBT and Quantization 
The algorithm of APBT is similar to the conventional DCT. Through DCT or APBT, the 
energy of image is concentrated in the top left corner. DC coefficient is in the upper left corner, 
and the others are AC coefficients. After quantization, the image can be compressed easily. 

The essence of DCT, APBT and their inverse transform is the matrix multiplication, 
as shown in Eqs. (9) and (10). 

T=Y TXT ,                                                             (9) 
1 1 T( )− −=X T Y T ,                                                      (10) 

where X  is the two-dimensional image matrix, Y  is the transform coefficients block, 
T  is the transform matrix. In the parallel algorithm of APBT, every thread executes 
vector multiplication twice, then every thread gets an APBT coefficient. 

APBT removes the correlation between pixels in each sub-image; it provides necessary 
conditions for image compression. After APBT, every block gets 64 APBT coefficients. The 
first coefficient, which locates in the upper left corner, is DC coefficient; the other 63 
coefficients are AC coefficient. In parallel algorithm of APBT, blocks are executed parallel 
and threads are executed parallel in the macro. Every thread gets an APBT coefficient and then 
processes the data of APBT coefficient parallel. After APBT, every APBT coefficient is 
quantified by uniform quantization table and they are rounded to integer which shows in Eq. 
(11), 

roundq
FF
Q

 
=  

 
,                                                        (11) 

where qF  is the data after quantization, F  is the data before quantization, Q  is uniform 
quantization step. In conventional JPEG system, it contains two kinds of quantization tables: 
chrominance quantization table and luminance quantization table, but in APBT-JPEG, it uses 
uniform quantization. In the serial algorithm of APBT and quantization, the pixels of source 
image are processed in order. But in the parallel algorithm, each thread executes the program 
at the same time, so the data is processed parallel. In this way, the efficiency of parallel 
algorithm has a high improvement. 

4.2 The Design of Parallel Huffman Coding 
After threads execute the code of APBT and quantization completely, the block will get an 8×8 
coefficient matrix. Every thread puts its data in a one-dimensional array with the scanning 
order of Zig-zag in Fig. 5. 

01ACDC 07AC

70AC 77AC  
Fig. 5. Zig-zag ordering 



1464                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

In JPEG system, entropy coding contains Huffman coding and arithmetic coding, and in 
the baseline JPEG, it only uses Huffman coding. APBT and quantization are prepared for 
image compression, and the image data is further compressed by entropy coding. 

In parallel APBT-JPEG system, there are two levels for parallelism in Huffman entropy. 
The first level is block-level parallelism, which is insufficient to achieve good performance as 
we witnessed during the development process. The second level is intra block parallelism; it 
utilizes the fact that both run-length encoding (RLE), which compresses long sequences of 
zeros after quantization of APBT-transformed data, and lookup of Huffman codes can be done 
in parallel. At first DC coefficient is coded by DPCM as shown in Fig. 6. 

 

1blocki− blocki

1DCi− DCi

1DIFF=DC DCi i−−

. . .. . .

 
Fig. 6. The DPCM of DC coefficient 

 

The first thread is called thread zero, when the difference between two adjacent blocks is 
calculated by thread zero. The next task of thread zero is coding the difference. The DC 
coefficient can be described by two symbols. A is the size of the difference and B is the 
amplitude of the difference. While thread zero gets A, it will query the DC Huffman table (as 
shown in Table 1) for Huffman code, and B is coded by VLI. The thread zero puts the 
Huffman code of B in the end of the Huffman code of A, which constitutes the Huffman code 
of DC coefficient. 

 

Table 1. The luminance Huffman table of DC coefficient 
Size Length Code 

0 2 00 
1 3 010 
2 3 011 
3 3 100 
4 3 101 
5 3 110 
6 4 1110 
7 5 11110 
8 6 111110 
9 7 1111110 
10 8 11111110 
11 9 111111110 

 

Fig. 7 shows that Huffman code of AC coefficient can also be described as two symbols: 
symbol A contains run-length and the size of non-zero AC coefficient, which is coded by RLE. 
Symbol B is the amplitude of AC coefficient. 

 Symbol A     Symbol B    

  (RUNLENGTH, SIZE) (AMPLITUDE)  
Fig. 7. The Huffman code of AC coefficient 

 

In parallel algorithm of Huffman coding, it is very difficult to get the run length, so the 
issue of getting run-length is a technical problem, because threads which run on GPU are 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1465 

concurrent, we cannot count it one by one, like in serial algorithm. In parallel algorithm, we 
propose a solution to solve this problem, we use sorting algorithm to get run-length in this 
paper. There are many sorting algorithms available, some can be implemented easily and 
efficiently on the GPU but many of them are not so suitable. In this parallel algorithm, 
odd-even sort is used in this paper (Fig. 8). Firstly, comparing the element at the even with the 
higher adjacent element at the odd. If the odd element is larger than the even element, the 
elements are swapped. Next, start from the odd element and repeat the above step. The list has 
been sorted until no swaps. 

 

2

1

1 4 3

2 3 4

5

5

7

6

6

7

8

8

1 2 3 4 5 7 6 8

 
Fig. 8. Odd-even sort 

 

We use an array which size is 64 in the share memory to achieve this algorithm. Share 
memory is shared in block, each block has their own share memory, and the share memory can 
only be visited by threads in the same block. When Zig-zag ordering, every thread compares 
its quantized APBT coefficient with zero, if the coefficient is not equal to zero, we put the 
number of the thread in the array. If the coefficient is equal to zero, we put the number which is 
above 64 in the array in order to facilitate the sorting, because the biggest number of thread is 
63. When the array is sorted, the difference of two adjacent numbers in the array is run-length 
(as shown in Fig. 9). The maximum number of the array is at the end of the array which is 
described as EOB. 

 

0 65 65 65 4 65 6 65 65

0 4 6 15 65 65 65 65 65

...

...
 

Fig. 9. The mean to get run-length 
 

When the run-length of the AC coefficient and the size of AC coefficient are got, the 
Huffman code can be obtained by querying the luminance Huffman table of AC coefficient. 
The amplitude of AC coefficient is also coded by VLI. The highest bit of VLI is the sign bit. If 
the amplitude is above zero, the sign bit is “1” and the binary of the amplitude is the symbol B. 
If the amplitude is below zero, the sign bit is “0” and the ones-complement code of amplitude 
is the symbol B. 

While the encoder is completed, the parallel algorithm of inverse APBT and quantization is 
similar to parallel APBT and quantization. In Huffman coding, we know that EOB is at the end 
of quantized APBT coefficients in each block. So at beginning of decoding, we need to 
pre-process the data of JPEG image on CPU. We extend the array to 64 elements by EOB. 
Therefore the parallel Huffman decoder has the same structure with Huffman coder. So it can 
be designed easily. 



1466                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

5. Experimental Results and Analysis 

In the experiment, the result shows that the efficiency of parallel APBT-JPEG is much higher 
than serial APBT-JPEG. Peak signal to noise ratio (PSNR) is chosen to measure the 
performance of reconstructed image in this paper. The CPU used for the experiment is Intel i3 
3.10GHz with 6GB DDR3 memory. The GPU used for the experiment is GTX480 with 384 
CUDA cores. 

[ ]

2

10
2

in out
1 1

255PSNR 10log (dB)
( , ) ( , )

M N

i j

MN

I i j I i j
= =

 
 
 =
 − 
 
∑∑

                              (12) 

where inI  and outI  stand for the original image and the reconstructed image respectively. M  
and N  represent the height and width of the test image. 

In order to test the performance of the proposed algorithm, simulation is conducted by 
applying to gray image Lena (8bits/pixel, 512×512). From Fig. 10, there are four 
reconstructed images of Lena. We can know that: Fig. 10(a) and Fig. 10(c) are the 
reconstructed images of DCT-JPEG; Fig. 10(b) and Fig. 10(d) are the reconstructed images of 
APBT-JPEG. Compared Fig. 10(a) with Fig. 10(c), it can be seen that the reconstructed image 
using parallel algorithm based on GPU has the same subjective effect with the serial one which 
runs on CPU, and comparing Fig. 10(b) with Fig. 10(d), we can conclude the same conclusion. 
Compared Fig. 10(a) with Fig. 10(b), the reconstructed image of APBT-JPEG has a better 
subjective quality than DCT-JPEG. 

   
(a)                                           (b) 

   
(c)                                                          (d) 

Fig. 10. The reconstructed images of Lena (0.20bpp): (a) DCT-JPEG on GPU, (b) APBT-JPEG on GPU, 
(c) DCT-JPEG on CPU, (d) APBT-JPEG on CPU 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1467 

Table 2 shows the PSNR of reconstructed images which obtained from the parallel 
algorithm of DCT-JPEG and the parallel algorithm of APBT-JPEG which runs on GPU. In 
Table 2, the PSNR of APBT-JPEG is higher than DCT-JPEG which means the objective 
quality of APBT-JPEG is better than DCT-JPEG. From Table 2 and Fig. 10, the reconstructed 
image using the parallel algorithm of APBT-JPEG has the better performance with the 
DCT-JPEG in terms of objective quality and subjective effect. 
 

Table 2. The PSNR of reconstructed images in different algorithms 
Bit rate/bpp DCT-JPEG PSNR/dB APBT-JPEG PSNR/dB 

0.20 28.52 28.82 
0.25 30.42 30.66 
0.35 32.82 32.90 
0.45 34.15 34.27 
0.60 35.57 35.73 
1.00 37.63 38.10 
1.25 39.08 39.20 

 
We also apply the parallel APBT-JPEG to color image. In the experiment, we use the 

images Lena (24bits/pixel, 512×512) and Mandrill (24bits/pixel, 512×512). In Fig. 11, there 
are some reconstructed images at different bit rates, and the reconstructed images of 
APBT-JPEG based on GPU have the same performance with APBT-JPEG based on CPU. 

   
(a) 0.30bpp                            (b) 0.50bpp                            (c) 0.70bpp 

   
(d) 0.30bpp                            (e) 0.50bpp                             (f) 0.70bpp 

Fig. 11. The reconstructed images based on parallel APBT-JPEG 
 
The different sizes from 128×128 to 1024×1024 of Lena are used to test the efficiency of 

parallel algorithm. We compare the runtime on GPU with the runtime on CPU. From the 
experimental results in Fig. 12, we can know the efficiency of parallel DCT-JPEG and 
APBT-JPEG algorithm is much higher than serial algorithms, so the efficiency of parallel 
computing is very impressive in general. 



1468                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

From the experimental results in Fig. 12 and Table 3, we can know the efficiency of 
parallel APBT algorithm is much higher than serial APBT algorithm. The parallel APBT that 
runs on GPU could gain at least 100 times acceleration, and the maximum speedup ratio can 
reach more than 140 times, so the computational efficiency of parallel computing is very 
impressive in general. Parallel computing based on GPU can process dozens of images at the 
same time, and the efficiency of all phase biorthogonal transform is greatly improved. 

 

128x128 128x256 256x256 256x512 512x512 512x1024 1024x1024
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Size

Ti
m

e(
m

s)

 

 

DCT-JPEG on CPU
DCT-JPEG on GPU

 
(a) 

128x128 128x256 256x256 256x512 512x512 512x1024 1024x1024
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Size

Ti
m

e(
m

s)

 

 

APBT-JPEG on CPU
APBT-JPEG on GPU

 
(b) 

Fig. 12. The running time of DCT-JPEG and APBT-JPEG in different platforms: (a) DCT-JPEG on 
CPU and GPU, (b) APBT-JPEG on CPU and GPU 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1469 

 
Table 3. The running time of DCT-JPEG and APBT-JPEG in different platforms 

              time 
size 

DCT-JPEG(ms) APBT-JPEG(ms) 
On CPU On GPU On CPU On GPU 

128×128 70 0.482 66 0.472 
128×256 101 0.781 93 0.775 
256×256 167 1.347 153 1.336 
256×512 268 2.551 256 2.540 
512×512 499 4.387 484 4.382 

512×1024 981 9.174 964 9.161 
1024×1024 1992 18.853 1886 18.775 

6. Conclusion 
On the basis of above discussion, it can be concluded that the parallel algorithm of 
APBT-JPEG is proposed in this paper. Compared with the conventional serial algorithm, the 
parallel APBT-JPEG that runs on GPU could gain at least 100 times acceleration, and the 
maximum speedup ratio can reach more than 140 times. The algorithm of parallel 
APBT-JPEG can get the same reconstructed image with serial algorithm. Compared with 
DCT-JPEG algorithm, at low bit rates, the reconstructed image has better objective quality and 
subjective effects. So the efficiency problem of conventional APBT algorithm and the 
blocking artifacts in DCT can be solved by the parallel APBT algorithm. Therefore, parallel 
algorithm of APBT is very helpful to improve the real-time of WMSN and the improvement 
the quantity of reconstructed image. 
In the future, we will research the video compression based on APBT, and use parallel 
algorithm to accelerate the speed of video compression. 

References 
[1] ISO/IEC, “Information Technology -- Digital Compression and Coding of Continuous-tone Still 

Images—Part 1: Requirements and Guidelines,” ISO/IEC 10918-1 | ITU-T Rec. T.81, 1994.  
Article (CrossRef Link). 

[2] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Transactions on 
Computers, vol. 23, no. 1, pp. 90-93, 1974. Article (CrossRef Link). 

[3] ISO/IEC, “Information Technology -- Digital Compression and Coding of Continuous-tone Still 
Images -- Part 1: Requirements and Guidelines,” ISO/IEC 10918-1: 1994 | ITU-T Rec. T. 81, 2011. 
Article (CrossRef Link). 

[4] ISO/IEC, “Information Technology -- Generic Coding of Moving Pictures and Associated Audio 
Information -- Part 2: Video,” ISO/IEC 13818-2: 2013, 2013. Article (CrossRef Link). 

[5] T. Ebrahimi and C. Horne, “MPEG-4 natural video coding -- an overview,” Signal Processing: 
Image Communication, vol. 15, no. 4-5, pp. 365-385, 2000. Article (CrossRef Link). 

[6] Joint Video Team of ITU-T and ISO/IEC, “Information Technology -- Coding of Audio-Visual 
Objects -- Part 10: Advanced Video Coding,” ITU-T Rec. H.264 | ISO/IEC 14496-10: 2012, 2014. 
Article (CrossRef Link). 

[7] ISO/IEC, “Information Technology -- High Efficiency Coding and Media Delivery in 
Heterogeneous Environments -- Part 2: High Efficiency Video Coding,” ISO/IEC 23008-2: 2013, 
2013. Article (CrossRef Link). 

[8] Z. X. Hou, C. Y. Wang, and A. P. Yang, “All phase biorthogonal transform and its application in 
JPEG-like image compression,” Signal Processing : Image Communication, vol. 24, no.10, pp. 
791-802, 2009. Article (CrossRef Link). 

http://groups.itu.int/itu-t/StandardsQA/tabid/1750/aff/312/aft/703/afv/topic/Default.aspx
http://dx.doi.org/doi:10.1109/T-C.1974.223784
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=61152
http://dx.doi.org/doi:10.1016/S0923-5965(99)00054-5
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=61490
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35424
http://dx.doi.org/doi:10.1016/j.image.2009.08.002


1470                                              Wang et al.: APBT-JPEG Image Coding Based on GPU 

[9] X. H. Zhao, Z. L. Wang, and K. K. Zhao, “Research on distributed image compression algorithm in 
coal mine WMSN,” International Journal of Digital Content Technology and its Applications, vol. 
5, no. 18, pp. 283-291, 2011. Article (CrossRef Link). 

[10] C. G. Yan, Y. D. Zhang, J. Z. Xu, F. Dai, J. Zhang, Q. H. Dai, and F. Wu, “Efficient parallel 
framework for HEVC motion estimation on many-core processors,” IEEE Transactions on 
Circuits and Systems for Video Technology, vol. 24, no. 12, pp. 2077-2089, 2014.  
Article (CrossRef Link). 

[11] C. G. Yan, Y. D. Zhang, J. Z. Xu, F. Dai, L. Li, Q. H. Dai, and F. Wu, “A highly parallel 
framework for HEVC coding unit partitioning tree decision on many-core processors,” IEEE 
Signal Processing Letters, vol. 21, no. 5, pp. 573-576, 2014. Article (CrossRef Link). 

[12] S. Tokdemir and S. Belkasim, “Parallel processing of DCT on GPU,” in Proc. of the Data 
Compression Conference, pp. 479, 2011. Article (CrossRef Link). 

[13] D. Liu and X. Y. Fan, “Parallel program design for JPEG compression encoding,” in Proc. of the 
9th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2502-2506, 2012. 
Article (CrossRef Link). 

[14] P. Holub, M. Srom, M. Pulec, J. Matela and M. Jirman, “GPU-accelerated DXT and JPEG 
compression schemes for low-latency network transmissions of HD, 2K, and 4K video,” Future 
Generation Computer Systems, vol. 29, no. 8, pp. 1991-2006, 2013. Article (CrossRef Link). 

[15] NVIDIA Corporation: NVIDIA CUDA programming guide. http://docs.nvidia.com/cuda/. 
 
 
 
 
 

 
Chengyou Wang received his B.E. degree in electronic information science and 
technology from Yantai University, China in 2004, and his M.E. and Ph.D. degree in signal 
and information processing from Tianjin University, China in 2007 and 2010 respectively. 
Now he is an associate professor in the School of Mechanical, Electrical and Information 
Engineering, Shandong University, Weihai, China. His current research interests include 
digital image/video processing and analysis, multidimensional signal and information 
processing. 
 
 

 
Rongyang Shan received his B.E. degree in communication engineering from Shandong 
University, Weihai, China, in 2014. Now he is pursuing his M.E. degree in signal and 
information processing in Shandong University, Weihai, China. His current research interests 
include parallel computing, digital image processing and analysis. 
 
 
 
 
 

 
Xiao Zhou received her B.E. degree in automation from Nanjing University of Posts and 
Telecommunications, China in 2003, her M.E. degree in information and communication 
engineering from Inha University, Korea in 2005, and her Ph.D. degree in information and 
communication engineering from Tsinghua University, China in 2013. Now she is a lecturer 
in the School of Mechanical, Electrical and Information Engineering, Shandong University, 
Weihai, China. Her current research interests include wireless communication technology, 
digital image processing and analysis. 

http://dx.doi.org/doi:10.4156/jdcta.vol5.issue2.33
http://dx.doi.org/doi:10.1109/TCSVT.2014.2335852
http://dx.doi.org/doi:10.1109/LSP.2014.2310494
http://dx.doi.org/doi:10.1109/DCC.2011.95
http://dx.doi.org/doi:10.1109/FSKD.2012.6234221
http://dx.doi.org/doi:10.1016/j.future.2013.06.006
http://docs.nvidia.com/cuda/

