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Abstract 
 

With the continuous growth of data size and the use of compression technology, data reduction 

has great research value and practical significance. Aiming at the shortcomings of the existing 
semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm, 

and designs a method of bidirectional order selection based on interval partitioning, which 

named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress 
Algorithm). In order to further improve the speed of the algorithm, we propose a parallel 

optimization iterative semantic compression algorithm using GPU (POICAG) and an 

optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid 
experiments are carried out on four kinds of datasets, which fully verified the efficiency of the 

proposed algorithm. 
 

 

Keywords: Semantic Compression, Spark Computing Framework, GPU, Parallel Processing, 

Interval Partition 
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1. Introduction 

More and more applications need to effectively explore and analyze mass, high-dimensional 

data table. The traditional syntax-based compression technique treats the data as a continuous 

byte, does not use semantic information such as the implicit complex dependencies in the data 
table, and therefore cannot achieve satisfactory compression effect. For exploratory data 

analysis, there is no need for an accurate answer. As long as the error range can be guaranteed, 

fast and approximate answers are often more ideal. So people try to apply semantic 

compression to large data tables. Semantic compression effectively reduce the content 
redundancy by mining the association contained in the data, and extracting the semantic model, 

which is applied to the data compression process. Semantic compression is generally lossy 

compression, namely, allowing that there is a certain error between the compressed data and 
the original data. There are some typical methods[1,2]

 
 for semantic compression of large data 

tables: ItCompress[3], Fascicles[4], SPARTAN[5-6] and so on. Among them, ItCompress and 

Fascicles on the data table to take the line to compress, to eliminate the data redundancy 
between tuples. SPARTAN combines the Bayesian network and CART, and firstly finds the 

dependencies between the attributes found in the ranks, and then operates row compression for 

the results of column compression. But there are many shortcomings existing in this 

implementation, which are mainly referring to efficiency, complexity and compression 
performance. 

      Contributions. In this paper, we start with analysis of ItCompress algorithm, and design a 

bidirectional ordered selection method based on interval partitioning, meanwhile, we propose 
an optimization method, which aims to solve the problems such as too many iterations, the 

random selection of represented rows, not adapt to large-scale datasets and so on, and also 

propose the iterative semantic compression algorithm (the optimized ItCompress algorithm). 

In order to further improve the speed of the algorithm, we propose a parallel optimization 
iterative semantic compression algorithm using GPU environment and an optimized iterative 

semantic compression algorithm using Spark computing framework. The validity of the 

proposed algorithm is verified by experiments. The specific contributions of this paper are as 
follows: 

(1) In order to deal with the large-scale dataset, we propose a bidirectional order selection 

method based on interval partitioning to solve the random problem of representative rows 
selection in the ItCompress algorithm. The algorithm divides the entire large database table 

into the same intervals with the number of representative rows to be extracted. Then, the 

intermediate data row is selected as the candidate representative row for each interval. After 

that, we compute the rows upward and downward both way simultaneously. 
(2) On the basis of the proposed selection method, we propose an optimized iterative 

semantic compression algorithm. 

(3) In order to improve the speed of the semantic compression algorithm, we use the CUDA 
kernel function to implement the parallel computation of the optimized iterative semantic 

compression algorithm on the GPU, and propose the GPU parallel algorithm POICAG 

(Parallel Optimized Iterative Compression Algorithm Using GPU). 
(4) In order to improve the speed and quality of the semantic compression algorithm, we 

propose DOICAS (Distributed Optimization Iterative Compression Algorithm Using Spark). 

(5) In order to verify the effectiveness of the proposed algorithm, we conduct many 

experiments. First, using the four datasets, comparisons of the parallel optimization algorithm, 
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the stand-alone serial algorithm, the parallel ItCompress and parallel optimization algorithms 

are operated respectively in the GPU environment, and the influence for selecting the various 
number of representative rows is tested. Second, the acceleration ratio and scalability using 

Spark are compared. 

The remains of this paper are organized as follows. In Section 2 first review the ItCompress 

algorithm (Iterative Semantic Compression Algorithm). In Section 3 we provide some related 
work. Section 4 presents Optimized Selection Method of Representative Rows. Section 5 

describes the Spark implementation and GPU implementation. Then experiments are 

conducted in Section 6. Finally, the paper is concluded in Section 7. 

2. Overview 

In this section, we first review the ItCompress algorithm (Iterative Semantic Compression 
Algorithm), which was published in our original paper[Anthony K.H.Tung, 3]. This paper will 

modify, optimize and extend ItCompress algorithm. Then we give a brief overview of the GPU 

parallel framework and the Spark computing framework in data processing aspects. 

2.1 ItCompress Algorithm 

Given a table T, which has m attributes X1, X2, X3, ... Xm, and n rows, we use R[Xi] to represent 
each attribute value of row R. We denote the domain of attribute Xi as dom(Xi). Our aim is to 

perform a lossy compression on T such that the values reconstructed from the compressed 

table satisfy certain error tolerances for each column. We denote these error tolerances as a 

vector e=[e1, e2, e3, ..., em] with ei being the error tolerance for Xi. The value ei is interpreted 
differently depending on the type of Xi. We focus on two of the most popular types: An 

attribute Xi is said to be numeric if the values in dom(Xi) can be ordered while attributes with 

unordered, discrete domain values are said to be categorical. 

A new semantic compression scheme based on the selection of representative rows is 
proposed. Each tuple in the Table T is assigned to one of the representative rows and its 

attribute values are defaulted to be the same with the assigned representative rows unless the 

actual differs from the default value by more than an preset error threshold. In such case, 

outlying values are specifically stored for the row. In fact, the scheme is similar to clustering, 
and each representative row considered like a cluster representative. However, there is a 

significant difference due to the outlying values that are possible. These attributes could have 

values in a row wildly different from its assigned representative row. As such, by most 
standard metrics, the distance between a row and its representative could be very large.  

Example Given the table T in Fig. 1(a) which contains 5 attributes and 8 tuples. Let the 
preset error threshold for the numeric attributes age, salary and assets be 5, 25000 and 50000 

respectively, while no errors are allowed for categorical data. Fig. 1(c) is shown the selected 

representative rows and Fig. 1(b) is shown the compressed table Tc. As can be seen, each row 
in the compressed table is associated with one of the representative rows using a representative 

row ID, namely RRid. A bitmap is assigned to each row to provide the position for the outlying 

values. A “1” at the n
th
 bit indicates that its n

th 
attribute value is within an preset error tolerance 

threshold of the n
th 

attribute value for the representative row, while a “0” indicates otherwise. 

In representative rows, each value is selected from responding collection of values for the 

same attribute in table T, namely ))(())(())(( 21 mi XdomXdomXdomP  . 

The difficult issue is how to select the representative rows in order to compress the data. 

For the purpose, the ItCompress algorithm is developed, we describe it in more detail.     
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age salary assets credit sex

20 30000 25000 poor male

25 76000 75000 good female

30 90000 200000 good female

40 100000 175000 poor male

50 110000 250000 good female

60 50000 150000 good male

70 35000 125000 poor female

75 15000 100000 poor male  

RRid Bitmap Outlying Values

2 01011 2,025,000

1 11011 75000

1 11111

1 01100 40,poor,male

1 01111 50

1 01110 60,male

2 11110 female

2 11111  
(a) Table T                                                          (b)Table Tc 

RRid age salary assets credit sex

1 30 90000 200000 good female

2 70 35000 100000 poor male  
(c)Representative Rows P 

Fig. 1. Representative Rows and Compressed Table 

 

Algorithm 1 ItCompress 

Input：Table T，the number of representative rows k，error tolerance e 

Output：Representative rows P, a compressed table Tc 

1:   Select k rows randomly from T to construct P 

2:   while 

3:     Initialize array G，number k，index from 1。 

4:     for i=1 to T.size i++ 

5:        Compare Ri and P，find the biggest coverage value Pj。 

6:        G[j]=i 

7:     end for 

8:     for i=1 to k  

9:         Sequential readout responding row in G[i] 
10:       Count the number of occurrences of each property value  

11:       Pi[Xj]=fv(Xj, G(Pi)) 

12:   end for 

13:   Compute totalcov，judge whether the loop is over 

14:  end while 

In Algorithm 1, ItCompress algorithm begins by picking a random set of k representative 
rows from the table T. It then iteratively improves this random selection with the objective of 

increasing the total coverage over the table to be compressed. There are two phases in each 
iteration, which are step 4 to 7 of ItCompress and Step 8 to 12 of ItCompress respectively.     

Definition 1 Coverage 

Let R be a row in T and let Pi be a representative row in P. We say that the coverage of Pi on 
R, cov(Pi, R) is the number of attributes Xi in which R[Xi] is matched by P[Xi].    

Definition 2 Total Coverage 

For each row Ri in table T, let Pmax(Ri) be the representative row from P that gives the 
maximum coverage among Pi to Ri. So the total coverage of P on T to be totalcov(P, 

T)=  ni
ii RRP

,...3,2,1
max )),(cov( . 

Definition 3 Maximum Coverage Problem 

Find a set of k representative rows P which maximizes totalcov(P, T). 
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2.1 Spark Computing Framework 

Spark is a distributed cluster computing framework based on memory computing. Compared 
to MapReduce, it has many advantages: the improved efficiency of lower network 

transmission and disk I/O. Spark uses memory for data computation for quick processing of 

queries, real-time return to analysis results. Spark provides higher-level API than Hadoop, and 

the running speed of same algorithm using Spark is 10-100 times faster than that using Hadoop. 
Spark is designed for specific types of workloads in cluster computing, that is, workloads of 

work datasets is reused (such as machine learning tasks) between parallel operations. Spark's 

computing architecture has three features: 

SparkContext

Driver Program

Cluster Manager

Cache

Task Task

Executor

Worker Node

Cache

Task Task

Executor

Worker Node

 
Fig. 2. Spark Operation Mode 

 

(1) Spark has a lightweight cluster computing framework. It applies Scala to its program 
architecture, and Scala as a multi-paradigm programming language has the features of 

concurrency, scalability, and support for programming paradigms, which is tightly integrated 
with Spark to easily manipulate distributed datasets and can easily add a new language 

structure. 

(2) Spark contains data flow computation and interactive computing in large data area. 
Spark can interact with HDFS to get the inside data files, while Spark can provide a good 
framework for data mining and machine learning owing to iterations and memory computation, 

as well as interactive computation. 

(3) Spark has a good fault tolerance mechanism. Spark uses RDD, which is represented as 
a collection of objects that are serialized, read-only, fault-tolerant, and can be executed in 

parallel by a Scala object in a set of nodes. Spark has made the most active and efficient large 
data common computing platform because of the characteristic that can efficiently process the 

distributed datasets, Fig. 2 describes the Spark's mode of operation. 

 

2.3 GPU Parallel Computing 

GPU is designed for graphics processing. Unlike the CPU's serial design pattern, GPU not 

only has natural parallel characteristic, but also has more obvious advantages on floating-point 

processing power and memory bandwidth than that of CPU, which contributed majorly to 
GPU’s strong computing power. Due to the high degree of parallelism in graphics processing, 

GPU can improve the processing power and memory bandwidth by increasing the parallel 

processing unit and the memory control unit. 
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Block 3Block 2

Multithreaded CUDA Program

Block 1Block 0

Block 7Block 6Block 5Block 4

Block 3Block 2Block 1Block 0

Block 7Block 6Block 5Block 4

SM 3SM 2SM 1SM 0

GPU with 4 SMs

Block 1Block 0

Block 3Block 2

SM 1SM 0

GPU with 2 SMs

Block 5Block 4

Block 7Block 6

 
Fig. 3. GPU Parallel Computing Architecture 

3. Related Work 

Although compression of datasets is a classical research topic in the database research 

community, the idea of exploiting attribute correlations (a.k.a. semantic compression) is 

relatively new [3-16]. Many excellent algorithms have been proposed up to now. Jagadish [4] 
introduce the notion of fascicles, study two problems related to fascicles, and develop 

algorithms to attack both of the above problems. Moreover, a semantic compression algorithm 

called ItCompress Iterative Compression is proposed in [3], which achieves good compression 
while permitting access even at attribute level without requiring the decompression of a larger 

unit. However, the number of iterative is huge in the case of big data. SPARTAN [5] is a 

system that takes advantage of attribute semantics and data-mining models to perform lossy 

compression of massive data tables, which is based on the novel idea of exploiting predictive 
data correlations and prescribed error tolerances for individual attributes to construct concise 

and accurate Classification and Regression Tree (CaRT) models for entire columns of a table. 

Wei [6] propose an effective compression approach based on on-line semantic clustering of 
GML documents. The approach deals with a GML document under compression on the fly via 

separating data from structures, clustering data based on the semantic similarities exploited 

from tags and texts, dictionary-encoding structures and delta-encoding geometric coordinate 
data before the general text compression on back end. David [7] outlines how Lossy 

Compression, a branch of Information Theory relating to the compact representation of data 

while retaining important information, can be applied to the Worst Case Execution Time 

analysis problem. In [8], a compression algorithm(2P2D), which exploits the obtained group 
movement patterns to reduce the amount of delivered data. The compression algorithm 

includes a sequence merge and an entropy reduction phases. However, the method is not really 

distributed. Wang [9] proposed several search space pruning methods and designed an 
efficient algorithm called SUMMARY. However, their work only supports categorical 

attributes. Other effective algorithms are proposed [10-21], but all have the shortcoming that 

can not handle a large scale data effectively.  
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Huffman Coding is used to compress attributes [22-24]. The major contribution of 
Raman’s work [23] is that they formalized the old idea of compressing ordered sequences by 
storing the difference between adjacent elements, which has been used in search engines to 

compress inverted indexes [22, 28]. Stonebraker [24] presents the design of a read-optimized 

relational DBMS that contrasts sharply with most current systems, which are write-optimized. 

Bayesian networks are well-known general purpose probabilistic models to characterize 
dependencies between random variables [25-31]. SPARTAN [26] uses a Bayesian network 
structure to guide the selection of CaRT models that minimize the overall storage requirement, 

based on the prediction and materialization costs for each attribute. Algorithms for 

automatically learn Bayesian networks and new structures called "Huffman networks" that 
model statistical relationships in the datasets are proposed, and algorithms for using these 

models to then compress the datasets [25]. SQUISH [28] is a system that uses a combination of 

Bayesian Networks and Arithmetic Coding to capture multiple kinds of dependencies among 

attributes and achieve near-entropy compression rate. 

In recent year, a few scholars have begun to study parallel compression algorithms to 
speedup the running the operation [33-36]. Cheng [33] proposes an efficient algorithm for fast 

encoding large Semantic Web data, and present the detailed implementation of proposed 

approach based on the state-of-art asynchronous partitioned global address space (APGAS) 

parallel programming model. Urbani [34] researches and proposes a MapReduce algorithm 
that efficiently compresses and decompresses a large amount of Semantic Web data. 

Afterwards proposes a set of distributed MapReduce algorithms to efficiently compress and 

decompress a large amount of RDF data [35]. However, the research in parallel computing is 
still rare. Moreover, all of research stay still in Hadoop1.0 phase. In view of this, we will 

propose a parallel computing algorithm based on GPU and a distributed algorithm based on 

Spark through analysing and optimizing ItCompress algorithm. 

4. Selection Method of Representative Rows 

The key point of the ItCompress algorithm lies in the selection of the representative rows, and 
the selection of representative rows is obtained by improving step by step through iterations. 

The more each attribute value of selected representative row matches the corresponding 

attribute value in the corresponding table T (i.e., the error threshold is not exceeded), the 
greater the number of bits "1", the greater the coverage value, and the better the quality of the 

representative row. A large number of experiments have shown that, this selection method can 

efficiently extract the best representative rows, whose essence is exhaustive comparison. 

However, in the case of massive data, the method is greatly challenged. In order to obtain the 
maximum coverage value and the totalcov value, it is necessary to compare each row of the 

entire table T, which will inevitably cause the rapid expansion of the workload. In order to deal 

with large-scale datasets, we propose a bidirectional ordered selection method based on 
interval partitioning. The main idea of the method is as follows: 

(1) First of all, the value of the numeric attribute of table T is pre-computed and sorted. 
Take table T in Fig. 1 as an example to sort table T and get Fig. 4. 

(2) In order to reduce the uncertainty and efficiency brought by randomly selected attribute 
values, we divide the entire table T according to the number of selected representative rows. 

For example, if the number of rows of table T is n, the whole algorithm needs to select d 
representative rows, then we divided the table T into d intervals, the number of data line in 

each section is  dn / . 
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age salary assets credit sex

20 15000 25000 poor male

25 30000 75000 good female

30 35000 100000 good female

40 50000 125000 poor male

50 76000 150000 good female

60 90000 175000 good male

70 100000 200000 poor female

75 110000 250000 poor male  
Fig. 4. Table To After Sorting 

 

(3) The value of the intermediate point element is selected as the initial value of the first 
iteration from each numeric type attribute of each partition, and the totalcov between them and 

the data row in table T is computed, as shown in Fig. 5 (25, 30000, 75000, good, female) and 
(60, 90000, 175000, good, male), the first and last rows of data in each interval are labeled. 

The second iteration starts from the intermediate data row and then goes upward and 

downward both ways simultaneously to compare. Once there is a row, whose numeric type 

data value exceeds the error threshold, the iteration is ended, and the rest of the data lines are 
all discarded. 

(4) Through this optimization iterative way, a large number of data rows that are not 
satisfied is cleaned up in advance, and efficiency is greatly improved by avoiding unnecessary 

calculation of consumption. This method is similar to pruning. 

 

age salary assets credit sex

20 15000 25000 poor male

25 30000 75000 good female

30 35000 100000 good female

40 50000 125000 poor male

50 76000 150000 good female

60 90000 175000 good male

70 100000 200000 poor female

75 110000 250000 poor male  
Fig. 5. The Intermediate Data Rows Selected In the First Iteration 

5. Parallel Processing of Optimization Iterative Semantic Compression 
Algorithm 

5.1 Distributed Implementation in Spark Environment 

Distributed Optimization Iteration Compression Algorithm using Spark (referred to as 
DOICAS) is designed by iterative RDD. DOICAS algorithm in the cluster achieve distributed 

operation by the Drive/Executor process. The pre-processed dataset is stored in HDFS, then 

the data is converted into Spark RDD and stored in the memory of the cluster. The data loading 
process is described in Fig. 6. The dataset is stored in the HDFS system in the form of Block, 

and the SparkContext object converts the data into the RDD stored in the form of Partition 

through the textFile method and loads it into memory.  
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Block

Block

Block

Block

……

Partition

Partition

Partition

Partition

……

Partition

Partition

Partition

Partition

……

DataBlocks RDD 1 RDD n

 
Fig. 6. The Phase of Loading Data 

 

Algorithm 2 DOICAS 

Input: A table T, An ordered table To, a user specified value k, an error tolerance vector e. 

Output: A compressed table Tc, a set of representative rows P 
1:Driver: 

2:   Load the dataset To from HDFS to convert to RDD. 

3:Executor: 

4:  The dataset RDD is divided into k intervals, perform a map operation for each interval. 

5:Loop: 

6:     For each section, take the ith row, which i=  kn 2/  

7:     Compare the data row to each row in table T, and calculate its coverage value 

8:     i++ or i-- 

9:     Take the i++ and i-- data lines, compared with the table T of each row, which coverage value 

calculated 

10:    If the numeric property value has a value greater than error tolerance, it ends. So each interval 

acquire a representative row  

11:End Loop 

 

As shown in Algorithm 2, on each work node, the dataset is extracted as a row unit and 
converted to a row wrapper class instance so that the dataset RDD is converted into a new 

RDD stored in memory. The task of the Drive process is to read the dataset and convert it. The 

Executor process performs a comparison, computes a coverage, and so on to generate the final 
compressed data and representative rows. 

5.2 Parallel Implementation in GPU Environment 

Preprocessing 

Module

Dataset Circular 

Buffer

Representative 

Rows Selection

Compressed 

Table Acquisition

Circular 

Buffer

Format 

Arrangement

CPU Processing

GPU Processing

 
Fig. 7. Optimized Iterative Semantic Compression Algorithm Based on GPU 

 

GPU parallel computing principle is a SIMT (Single Instruction Multiple Thread) mode, that 

is, a bunch of threads to execute the same instruction, but the processing data can be different. 
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Therefore, in order to give full play to the GPU parallel computing power, the key is a 

reasonable allocation of each thread to deal with the data, and strive to deal with the amount of 
data between the threads more balanced. Because CUDA provides a parallel programming 

model based on thread grid, CUDA's kernel function is used to realize the iterative semantic 

compression algorithm using GPU. The important task is to divide the thread grid. 

Based on the idea of bidirectional ordered selection based on interval partitioning, we 
present the Parallel Optimization Iterative Compression Algorithm Using GPU (referred to as 
POICAG), as shown in Algorithm 3. Assuming that the number of stream processors of the 

GPU is Pnum, the number of dataset rows is n, grouped according to Equation (1), the number 

of rows in each group is 
Row=n/Pnum                                                                    (1) 

 

Algorithm 3 POICAG 

Input: inputPath[100], paraPath[100], numDim, numSample, k, maxIter 

Output: k representative rows 

Procedure:  
1:  Threads=Pnum/Blocks                      // Number of threads per block 

2:  Threadi=blockIdx.x*blockDim.x+threadIdx.x  // The global number of the thread 

3:  start_row=Threadi*Row                  // Label the first line number of each group 

4:  end_row=Threadi*Row+Row          // Label the last line number of each group 

5:  mid_row=(start_row+end_row)/2    // Obtain the middle line number for each group 

6:  for mid_row to start_row                 // Compares each upward row in turn 

7:  for mid_row to end_row                  // Compares each downward row in turn 

8: //initialization 

9:    srand(100); 

10:    cudaSetDevice(0); int i, j, nearest, *member, *tolerance,* aspace, *numValues; 

11: //input parameter declaration 
12:    int numDim, numSample, k, maxIter; char inputPath[100], paraPath[100]; 

13: //check and read input parameters 

14:    strcpy(inputPath, argv[1]);                   // input file path 

15:    strcpy(paraPath, argv[2]);                   // parameter file path 

16:    sscanf(argv[3], "%d", &numDim);      // number of dimension 

17:  sscanf(argv[4], "%d", &numSample); // number of samples 

18:  sscanf(argv[5], "%d", &k);                  // number of centers 

19:  sscanf(argv[6], "%d", &maxIter);       // maximum iteration 

20://initialize member data 

21:  cudaMallocManaged(&member, sizeof(int) * numSample); 

22:  cudaMallocManaged(&numMatch, sizeof(int) * numSample); 

23:  cudaMemset(member, 1, sizeof(int) * numSample); 
24://initialize input data 

25:  cudaMallocManaged(&input, sizeof(int) * numDim * numSample); 

26:  readRow(inputFile, input, numDim * numSample); 

27://initialize parameter data 

28://read number of different value in each attribute (1st row) 

29:  cudaMallocManaged(&numValues, sizeof(int) * numDim); 

30:  readRow(paraFile, numValues, numDim); 

31://read range of tolerance for each attribute (2nd row) 

32:  cudaMallocManaged(&tolerance, sizeof(int) * numDim); 

33:  readRow(paraFile, tolerance, numDim); 

34:// read storage requirement of each attribute (3rd row) 
35:  cudaMallocManaged(&aspace, sizeof(int) * numDim); 

36:  readRow(paraFile, aspace, numDim); 
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37:/* initialize center and cluster data */ 

38:  cudaMallocManaged(&center, sizeof(int) * k * numDim); 

39:  cudaMallocManaged(&ccenter, sizeof(int) * k); 

40:  for (i = 0; i < k; ++i) do     

41:       ccenter[i] = numDim; 

42://pick k centers 

43:  for (i = 0; i < k; ++i) do 

44:       dim3 blockSize(BLOCK_SIZE, BLOCK_SIZE, 1); 
45:       dim3 gridSize(ceil(numDim, BLOCK_SIZE), ceil(k, BLOCK_SIZE), 1); 

46:// compute initial centers 

47: computeCenter<<<gridSize, blockSize>>>(clusterInfoDim, 

48:   numValues, tolerance, columnMatch, center, numDim, k); 

49://iteration 

50:  for (int it = 0; it < maxIter; ++it) do 

51:   {//move this loop to a separate function//// GPU call 

52:    for (i = 0; i < k; ++i) do 

53:     { 

54:    for (j = 0; j < numDim; ++) do 

55:   printf("%d ", center[i * numDim + j]); 
56:      } 

57:    } 

POICAG is shown as Algorithm 3, in which, part of Grouping Computing is described 
from step 1 to 7, and the rest is  the main part of POICAG. 

6.Performance Evaluation 

Aimed to the distributed algorithm using Spark DOICAS, according to the literature [Ran Jin, 

2], we build a cloud platform with 8 computers, installed JDK1.8.0 and Spark-1.5.2, the 

specific configuration information is as follows: 
 

Table 1. Cluster Configuration 

Item Personal Computer Server 

Memory(GB) 8 128 

Hard Disk(GB) 512 1000 

Processor(GHz) Intel Core(TM) i7-5500U 2.4GHz Intel Xeon 2.0 

Core Number 4 24 

OS CenOS6.6 CenOS6.6 

 

We implement the GPU-based parallel algorithm POICAG with CUDA C. The client 
computers are equipped with Intel Core (TM) i7-5500U 2.4GHz processor, and 8GB memory, 

64-bit OS. GPU servers use the high performance GPU computing cluster by the school of 
computing of National University of Singapore(NUS). The Configuration information is listed 

in Table 1. 

The experimental datasets are shown as following:  

We implement the GPU-based parallel algorithm POICAG with CUDA C. The client 
computers are equipped with Intel Core (TM) i7-5500U 2.4GHz processor, and 8GB memory, 
64-bit OS. GPU servers use the high performance GPU computing cluster by the school of 

computing of National University of Singapore(NUS). 
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(1)NHL Dataset 

(2)Sponge Dataset [Vibhav Vineet, 3] 

(3)RoadSafe Dataset(https://data.gov.uk/data/) 

(4)KDD Cup1999 Dataset (http://archive.ics.uci.edu/ml/datasets/) 

For the sake of experiment convenience, we clean the datasets and delete the insignificant 
attributes, the final datasets information is shown in Table 2. Among them, the NHL dataset is 

our artificial simulation dataset, Road Safe Dataset is the safety data about the British road 

accident and personal casualties. In order to avoid chance, we run ten times for each dataset, 
and remove the maximum and minimum, and finally take the average. For example, NHL 

dataset in the CPU stand-alone mode running 10 times the results shown in Fig. 8, removing 

the maximum value 0.051 and the minimum value 0.021. 

 
Table 2. Dataset Information 

Dataset Tuples Attributes 

NHL 856 13 

Sponge 2400 10 

Road Safe 141663 17 

KDD Cup1999 4000000 42 

 

 
Fig. 8. Results of The Ten Runs of The NHL Dataset in The CPU Stand-alone Mode 

6.1 Comparison in GPU Mode 

(1)Running Time 

In order to verify the effectiveness of POICAG (Parallel Optimized Iterative Compression 
Algorithm Using GPU) proposed in this paper, we compare it with that in CPU stand-alone 

mode. For different numbers of datasets, we set different k values (the number of selected 

rows).  
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Fig. 9. Four Datasets in the CPU and GPU Mode Running Time 

 

We can be seen from Fig. 9, as the amount of data continues to grow, the advantages of 

GPU parallel computing highlights, and execution time surge in CPU stand-alone mode. It is 
conceivable that CPU mode running will encounter a huge bottleneck problem when the 

amount of data increased to T, P level. As the NHL Dataset data volume is small, CPU mode 

operation has certain advantages. Whereas GPU mode running time is 25.558 times that of the 
CPU mode, when processing Sponge Dataset, the ratio is reduced to 1.647 times. When 

dealing with the Road Safe Dataset, the GPU only needs 10.676 seconds and the time is nearly 
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1/3 of the CPU mode. When dealing with KDD Cup1999 Dataset, GPU advantage is more 

obvious, running only about 1/13 of the CPU. So GPU is an efficient tool to handle large-scale 
data. 

 

Table 3. Comparison of run time between ItCompress and Optimized ItCompress 

 NHL Dataset Sponge Dataset Road Safe Dataset KDD Cup1999 

ItCompress  

Using GPU 
1.398(s) 2.118(s) 13.741(s) 36.813(s) 

POICAG 1.237(s) 1.868(s) 10.676(s) 32.185(s) 

In order to verify the effectiveness of POICAG (Parallel Optimized Iterative Compression 
Algorithm Using GPU) proposed in this paper, we use the above four datasets to compare the 

ItCompress algorithm using GPU with POICAG. The results are shown in Table 3. 

(2) Compress Ratio under Different k 
 

Table 4. Different k Values Influence On the Dataset Compression Ratio (一) 

 
NHL Dataset Sponge Dataset 

k=50 k=300 k=500 k=50 k=300 k=500 

ItCompress 

0.313 0.202 0.196 0.332 0.231 0.225 

0.293 0.209 0.201 0.312 0.235 0.229 

0.289 0.211 0.205 0.310 0.242 0.231 

0.327 0.199 0.187 0.342 0.219 0.213 

0.318 0.202 0.198 0.332 0.235 0.223 

0.302 0.205 0.201 0.319 0.230 0.230 

0.315 0.210 0.202 0.330 0.239 0.227 

0.299 0.206 0.201 0.311 0.234 0.235 

0.314 0.204 0.199 0.332 0.228 0.227 

0.302 0.205 0.200 0.318 0.232 0.232 

Compress 
Ratio 

(Optimized 
ItCompress) 

0.334 0.214 0.208 0.354 0.246 0.237 

0.325 0.220 0.213 0.342 0.252 0.252 

0.312 0.217 0.210 0.335 0.239 0.243 

0.330 0.207 0.212 0.349 0.232 0.234 

0.327 0.209 0.199 0.342 0.235 0.237 

0.318 0.212 0.203 0.332 0.239 0.240 

0.329 0.216 0.208 0.344 0.243 0.237 

0.331 0.207 0.200 0.349 0.231 0.229 

0.329 0.213 0.202 0.343 0.242 0.232 

0.322 0.215 0.203 0.341 0.244 0.236 

Compress 
Ratio 

(POICAG) 

0.320 0.210 0.201 0.338 0.235 0.238 

0.319 0.223 0.209 0.335 0.251 0.231 

0.327 0.209 0.199 0.346 0.241 0.230 
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0.330 0.211 0.206 0.352 0.243 0.233 

0.323 0.213 0.202 0.339 0.239 0.234 

0.327 0.210 0.200 0.341 0.237 0.228 

0.327 0.213 0.203 0.343 0.241 0.231 

0.329 0.215 0.207 0.344 0.245 0.235 

0.331 0.217 0.205 0.353 0.244 0.233 

0.328 0.212 0.203 0.340 0.240 0.230 

 

Table 5. Different k Values Influence On the Dataset Compression Ratio (二) 

 
Road Safe Dataset KDD Cup1999 

k=50 k=300 k=500 k=50 k=300 k=500 

ItCompress 

0.503 0.412 0.401 0.698 0.623 0.612 

0.506 0.405 0.393 0.712 0.628 0.615 

0.511 0.409 0.390 0.703 0.641 0.620 

0.513 0.415 0.402 0.692 0.621 0.616 

0.497 0.401 0.388 0.694 0.619 0.609 

0.502 0.412 0.400 0.696 0.627 0.617 

0.507 0.415 0.403 0.702 0.631 0.621 

0.511 0.406 0.393 0.711 0.634 0.613 

0.494 0.401 0.391 0.708 0.629 0.619 

0.500 0.411 0.392 0.699 0.633 0.623 

Compress 
Ratio 

(Optimized 
ItCompress) 

0.531 0.423 0.414 0.721 0.629 0.618 

0.527 0.414 0.401 0.730 0.638 0.627 

0.529 0.411 0.400 0.718 0.631 0.630 

0.532 0.420 0.406 0.719 0.627 0.624 

0.535 0.422 0.414 0.723 0.620 0.611 

0.526 0.414 0.403 0.730 0.632 0.618 

0.530 0.421 0.412 0.722 0.628 0.616 

0.528 0.412 0.401 0.710 0.632 0.622 

0.531 0.417 0.403 0.711 0.629 0.614 

0.528 0.414 0.402 0.714 0.630 0.619 

Compress 
Ratio 

(POICAG) 

0.537 0.423 0.411 0.734 0.626 0.621 

0.531 0.421 0.410 0.727 0.641 0.623 

0.533 0.424 0.413 0.733 0.637 0.619 

0.539 0.423 0.412 0.725 0.632 0.621 

0.541 0.430 0.418 0.723 0.630 0.623 

0.543 0.429 0.415 0.719 0.633 0.620 

0.538 0.415 0.402 0.731 0.634 0.614 

0.544 0.433 0.421 0.726 0.641 0.622 

0.540 0.428 0.415 0.728 0.637 0.615 

0.537 0.424 0.410 0.729 0.642 0.621 
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The k representative rows is preselected randomly for ItCompress and POICAG (Parallel 
Optimized Iterative Compression Algorithm Using GPU). In order to examine whether the 
difference in k value has an effect on compression performance when more or fewer 

representative rows are selected, we varied k, and again repeated ten times with different 

random initial representative rows for each k value. For the same reason, we also repeated the 

experiment with four datasets. The experimental results are shown in Table 4 and Table 5 
where each column represents one set of ten repetitions for a selected dataset and specified 

value of k. As can be seen, all values in any column are almost identical, indicating that the 

variance in compression ration is insignificant for all the four datasets with the value of k 
ranging from 50 to 500 due to different random initialization. Therefor, we believe that both 

the compression ration of POICAG and Optimized ItCompress are stable although the random 

initialization. Meanwhile, the two improved algorithms maintain a good compression rate as 
seen from the experimental results. In contrast, the POICAG algorithm has better stability, the 

value changes even smaller. 

6.2 Comparison in Spark Mode 

(1)Test of Speedup Ratio 

Speedup ratio is defined by parallel computing to reduce the running time and improve the 
performance of obtained. It is an important indicator to verify the performance of parallel 

computing. The greater speedup ratio is, it’s indicating that the less time parallel computing 
consume relatively, and the higher parallel efficiency and performance improve. Under 

changing the number of Hadoop cluster nodes, respectively use the results of speedup ratio 

performance tests according to above four datasets. Table 6 is the running time of datasets 

under different nodes. Table 6 and Fig. 10 show the results.  

 
Table 6. Comparison of running time and speedup 

Dataset Nodes Total Time(sec) Speedup 

NHL Dataset 

1 0.0484 1 

2 1.1293 0.043 

4 0.9319 0.052 

6 0.8726 0.055 

8 0.6942 0.070 

Sponge Dataset 

1 1.134 1 

2 1.792 0.633 

4 1.325 0.856 

6 1.185 0.957 

8 0.976 1.162 

Road Safe Dataset 

1 27.538 1 

2 15.772 1.746 

4 9.261 2.974 

6 6.271 4.391 

8 4.809 5.726 

KDD Cup 1999 

1 432.742 1 

2 38.026 11.380 

4 21.854 19.802 

6 8.629 50.150 

8 6.812 63.526 
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Fig. 10. Speedup Ratio Performance Test 

 

From the experimental results as shown in Table 6, we can see that when the Spark 
distributed platform has only one computer, it is actually degraded into stand-alone CPU mode. 

With the increase of the number of computers in the platform, the running speed of the dataset 

is also increase. However, when dealing with the smaller amount of data NHL dataset and 
Sponge dataset, the advantage of Spark platform is not reflected, basically much slower than 

the stand-alone mode. For example, in the NHL dataset, the running time of two nodes is 

1.1293, which is equivalent to that of GPU parallel mode, yet is nearly 25 times slower than 

the stand-alone mode. The reason is that Spark distributed platform is a large frame structure 
that needs to support multiple modules, and there is no advantage in dealing with the small 

amount of data. But with the increase in the number of nodes, running time gradually reduced, 

the acceleration ratio gradually increased, but not obvious. In dealing with large-scale dataset 
KDD Cup1999, CPU stand-alone mode will encounter a small bottleneck, running time 

consumption is very large, while the Spark cloud platform shows its value, and the running 

time on which with two nodes is about one eleventh that of stand-alone mode. 

 
(2)Analysis of scalability 

According to the paper [Ran Jin, 37], the formula is η=Sp/N，wherein, Sp represents the 

speedup ratio, N means the number of cluster nodes. Fig. 11 shows the efficiency of parallel 

algorithms proposed in the paper.  
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Fig. 11. Expansion Rate Performance Test 

 

Fig. 11 depicts the experimental results on the four datasets. We can find from it: (1) Under 
the large scale dataset, with the cloud platform work node increases, running time is gradually 

reduced; (2) In addition to the small dataset NHL, although the performance of different 

dataset is various, the parallel algorithm using Spark show a basic linear rule between the work 
nodes and the speedup ratio.  
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6.3 Effectiveness Comparison of Algorithms 
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Fig. 12. Error Threshold vs Compression Ratio 

 

Here, We compare POICAG and DOICAS with the other compression algorithms according to 
effectiveness. SQUISH[28], APGAS[33] and SWSM[34] are proposed in recent years, which 

have been proved to be effective. 

From the graphs in Fig. 12, we can make the following observations: (1) SQUISH 

algorithm acquires better performance than others on the NHL dataset and Sponge dataset, 
especially when error tolerance threshold is small(0.5%). The main reason is that the encoding 

scheme adopted by SQUISH can leverage the skewness of the distribution and achieve 

near-optimal performance. (2) For pure semantic compression, the compressed tables 
produced by ItCompress achieves about 50% reduction in compression ratio in NHL dataset 

and Sponge dataset, compared to SWSM. But ItCompress is worse when the number of dataset 

is large. (3) In Road Safe dataset and KDD Cup1999 dataset, the performance of POICAG and 
DOICAS is far better than ItCompress, and also than other algorithms. A bidirectional ordered 

selection method based on interval partitioning is a main reason. In contrast, DOICAS is 

slightly better than POICAG  
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7.Conclusion 

Relational datasets are being generated at an alarmingly rapid rate across organizations and 

industries. Compressing these datasets could significantly reduce storage and archival costs. 
Traditional compression algorithms, e.g., gzip, are suboptimal for compressing relational 

datasets since they ignore the table structure and relationships between attributes. The existing 

semantic compression algorithms face many challenges, such as too many iterations, the 
random selection of representative rows, not adapt to large scale datasets and so on. In this 

paper, we firstly analyze the ItCompress algorithm, and design a bidirectional ordered 

selection method based on interval partitioning, then propose an Optimized Iterative Semantic 

Compression Algorithm. On the basis of this, we further propose a Parallel Optimized 
Iterative Compression Algorithm Using GPU(POICAG) and Distributed Optimization 

Iterative Compression Algorithm Using Spark(DOICAS), using GPU environment and Spark 

computing framework respectively. A lot of valid experiments are carried out on four kinds of 
datasets. The efficiency of the proposed algorithm is verified by the comparison of speedup, 

scalability scalability, running time and so on. 
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