
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, Jun. 2018 2761

Copyright ⓒ 2018 KSII

http://doi.org/10.3837/tiis.2018.06.018 ISSN : 1976-7277

An Optimized Iterative Semantic
Compression Algorithm And Parallel

Processing for Large Scale Data

Ran Jin
1, 2

, Gang Chen
2
, Anthony K. H. Tung

3
, Lidan Shou

2
 and Beng Chin Ooi

3

1 School of Electronic and Computer, Zhejiang Wanli University
Ningbo, Zhejiang 315100 - China

[e-mail: ran.jin@163.com]
2 College of Computer Science and Technology, Zhejiang University

Hangzhou, Zhejiang 310027 - China
[e-mail: {cg, should}@zju.edu.cn]

3 School of Computing, National University of Singapore
Singapore, Singapore 119077 - Singapore
[e-mail: {atung, ooibc}@comp.nus.edu.sg]

*Corresponding author: Ran Jin

Received July 25, 2017; revised November 27, 2017; accepted February 10, 2018;
published June 30, 2018

Abstract

With the continuous growth of data size and the use of compression technology, data reduction

has great research value and practical significance. Aiming at the shortcomings of the existing
semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm,

and designs a method of bidirectional order selection based on interval partitioning, which

named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress
Algorithm). In order to further improve the speed of the algorithm, we propose a parallel

optimization iterative semantic compression algorithm using GPU (POICAG) and an

optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid
experiments are carried out on four kinds of datasets, which fully verified the efficiency of the

proposed algorithm.

Keywords: Semantic Compression, Spark Computing Framework, GPU, Parallel Processing,

Interval Partition

2762 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

1. Introduction

More and more applications need to effectively explore and analyze mass, high-dimensional

data table. The traditional syntax-based compression technique treats the data as a continuous

byte, does not use semantic information such as the implicit complex dependencies in the data
table, and therefore cannot achieve satisfactory compression effect. For exploratory data

analysis, there is no need for an accurate answer. As long as the error range can be guaranteed,

fast and approximate answers are often more ideal. So people try to apply semantic

compression to large data tables. Semantic compression effectively reduce the content
redundancy by mining the association contained in the data, and extracting the semantic model,

which is applied to the data compression process. Semantic compression is generally lossy

compression, namely, allowing that there is a certain error between the compressed data and
the original data. There are some typical methods[1,2]

 for semantic compression of large data

tables: ItCompress[3], Fascicles[4], SPARTAN[5-6] and so on. Among them, ItCompress and

Fascicles on the data table to take the line to compress, to eliminate the data redundancy
between tuples. SPARTAN combines the Bayesian network and CART, and firstly finds the

dependencies between the attributes found in the ranks, and then operates row compression for

the results of column compression. But there are many shortcomings existing in this

implementation, which are mainly referring to efficiency, complexity and compression
performance.

 Contributions. In this paper, we start with analysis of ItCompress algorithm, and design a

bidirectional ordered selection method based on interval partitioning, meanwhile, we propose
an optimization method, which aims to solve the problems such as too many iterations, the

random selection of represented rows, not adapt to large-scale datasets and so on, and also

propose the iterative semantic compression algorithm (the optimized ItCompress algorithm).

In order to further improve the speed of the algorithm, we propose a parallel optimization
iterative semantic compression algorithm using GPU environment and an optimized iterative

semantic compression algorithm using Spark computing framework. The validity of the

proposed algorithm is verified by experiments. The specific contributions of this paper are as
follows:

(1) In order to deal with the large-scale dataset, we propose a bidirectional order selection

method based on interval partitioning to solve the random problem of representative rows
selection in the ItCompress algorithm. The algorithm divides the entire large database table

into the same intervals with the number of representative rows to be extracted. Then, the

intermediate data row is selected as the candidate representative row for each interval. After

that, we compute the rows upward and downward both way simultaneously.
(2) On the basis of the proposed selection method, we propose an optimized iterative

semantic compression algorithm.

(3) In order to improve the speed of the semantic compression algorithm, we use the CUDA
kernel function to implement the parallel computation of the optimized iterative semantic

compression algorithm on the GPU, and propose the GPU parallel algorithm POICAG

(Parallel Optimized Iterative Compression Algorithm Using GPU).
(4) In order to improve the speed and quality of the semantic compression algorithm, we

propose DOICAS (Distributed Optimization Iterative Compression Algorithm Using Spark).

(5) In order to verify the effectiveness of the proposed algorithm, we conduct many

experiments. First, using the four datasets, comparisons of the parallel optimization algorithm,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2763

the stand-alone serial algorithm, the parallel ItCompress and parallel optimization algorithms

are operated respectively in the GPU environment, and the influence for selecting the various
number of representative rows is tested. Second, the acceleration ratio and scalability using

Spark are compared.

The remains of this paper are organized as follows. In Section 2 first review the ItCompress

algorithm (Iterative Semantic Compression Algorithm). In Section 3 we provide some related
work. Section 4 presents Optimized Selection Method of Representative Rows. Section 5

describes the Spark implementation and GPU implementation. Then experiments are

conducted in Section 6. Finally, the paper is concluded in Section 7.

2. Overview

In this section, we first review the ItCompress algorithm (Iterative Semantic Compression
Algorithm), which was published in our original paper[Anthony K.H.Tung, 3]. This paper will

modify, optimize and extend ItCompress algorithm. Then we give a brief overview of the GPU

parallel framework and the Spark computing framework in data processing aspects.

2.1 ItCompress Algorithm

Given a table T, which has m attributes X1, X2, X3, ... Xm, and n rows, we use R[Xi] to represent
each attribute value of row R. We denote the domain of attribute Xi as dom(Xi). Our aim is to

perform a lossy compression on T such that the values reconstructed from the compressed

table satisfy certain error tolerances for each column. We denote these error tolerances as a

vector e=[e1, e2, e3, ..., em] with ei being the error tolerance for Xi. The value ei is interpreted
differently depending on the type of Xi. We focus on two of the most popular types: An

attribute Xi is said to be numeric if the values in dom(Xi) can be ordered while attributes with

unordered, discrete domain values are said to be categorical.

A new semantic compression scheme based on the selection of representative rows is
proposed. Each tuple in the Table T is assigned to one of the representative rows and its

attribute values are defaulted to be the same with the assigned representative rows unless the

actual differs from the default value by more than an preset error threshold. In such case,

outlying values are specifically stored for the row. In fact, the scheme is similar to clustering,
and each representative row considered like a cluster representative. However, there is a

significant difference due to the outlying values that are possible. These attributes could have

values in a row wildly different from its assigned representative row. As such, by most
standard metrics, the distance between a row and its representative could be very large.

Example Given the table T in Fig. 1(a) which contains 5 attributes and 8 tuples. Let the
preset error threshold for the numeric attributes age, salary and assets be 5, 25000 and 50000

respectively, while no errors are allowed for categorical data. Fig. 1(c) is shown the selected

representative rows and Fig. 1(b) is shown the compressed table Tc. As can be seen, each row
in the compressed table is associated with one of the representative rows using a representative

row ID, namely RRid. A bitmap is assigned to each row to provide the position for the outlying

values. A “1” at the n
th
 bit indicates that its n

th
attribute value is within an preset error tolerance

threshold of the n
th

attribute value for the representative row, while a “0” indicates otherwise.

In representative rows, each value is selected from responding collection of values for the

same attribute in table T, namely))(())(())((21 mi XdomXdomXdomP  .

The difficult issue is how to select the representative rows in order to compress the data.

For the purpose, the ItCompress algorithm is developed, we describe it in more detail.

2764 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

age salary assets credit sex

20 30000 25000 poor male

25 76000 75000 good female

30 90000 200000 good female

40 100000 175000 poor male

50 110000 250000 good female

60 50000 150000 good male

70 35000 125000 poor female

75 15000 100000 poor male

RRid Bitmap Outlying Values

2 01011 2,025,000

1 11011 75000

1 11111

1 01100 40,poor,male

1 01111 50

1 01110 60,male

2 11110 female

2 11111
(a) Table T (b)Table Tc

RRid age salary assets credit sex

1 30 90000 200000 good female

2 70 35000 100000 poor male
(c)Representative Rows P

Fig. 1. Representative Rows and Compressed Table

Algorithm 1 ItCompress

Input：Table T，the number of representative rows k，error tolerance e

Output：Representative rows P, a compressed table Tc

1: Select k rows randomly from T to construct P

2: while

3: Initialize array G，number k，index from 1。

4: for i=1 to T.size i++

5: Compare Ri and P，find the biggest coverage value Pj。

6: G[j]=i

7: end for

8: for i=1 to k

9: Sequential readout responding row in G[i]
10: Count the number of occurrences of each property value

11: Pi[Xj]=fv(Xj, G(Pi))

12: end for

13: Compute totalcov，judge whether the loop is over

14: end while

In Algorithm 1, ItCompress algorithm begins by picking a random set of k representative
rows from the table T. It then iteratively improves this random selection with the objective of

increasing the total coverage over the table to be compressed. There are two phases in each
iteration, which are step 4 to 7 of ItCompress and Step 8 to 12 of ItCompress respectively.

Definition 1 Coverage

Let R be a row in T and let Pi be a representative row in P. We say that the coverage of Pi on
R, cov(Pi, R) is the number of attributes Xi in which R[Xi] is matched by P[Xi].

Definition 2 Total Coverage

For each row Ri in table T, let Pmax(Ri) be the representative row from P that gives the
maximum coverage among Pi to Ri. So the total coverage of P on T to be totalcov(P,

T)=  ni
ii RRP

,...3,2,1
max)),(cov(.

Definition 3 Maximum Coverage Problem

Find a set of k representative rows P which maximizes totalcov(P, T).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2765

2.1 Spark Computing Framework

Spark is a distributed cluster computing framework based on memory computing. Compared
to MapReduce, it has many advantages: the improved efficiency of lower network

transmission and disk I/O. Spark uses memory for data computation for quick processing of

queries, real-time return to analysis results. Spark provides higher-level API than Hadoop, and

the running speed of same algorithm using Spark is 10-100 times faster than that using Hadoop.
Spark is designed for specific types of workloads in cluster computing, that is, workloads of

work datasets is reused (such as machine learning tasks) between parallel operations. Spark's

computing architecture has three features:

SparkContext

Driver Program

Cluster Manager

Cache

Task Task

Executor

Worker Node

Cache

Task Task

Executor

Worker Node

Fig. 2. Spark Operation Mode

(1) Spark has a lightweight cluster computing framework. It applies Scala to its program
architecture, and Scala as a multi-paradigm programming language has the features of

concurrency, scalability, and support for programming paradigms, which is tightly integrated
with Spark to easily manipulate distributed datasets and can easily add a new language

structure.

(2) Spark contains data flow computation and interactive computing in large data area.
Spark can interact with HDFS to get the inside data files, while Spark can provide a good
framework for data mining and machine learning owing to iterations and memory computation,

as well as interactive computation.

(3) Spark has a good fault tolerance mechanism. Spark uses RDD, which is represented as
a collection of objects that are serialized, read-only, fault-tolerant, and can be executed in

parallel by a Scala object in a set of nodes. Spark has made the most active and efficient large
data common computing platform because of the characteristic that can efficiently process the

distributed datasets, Fig. 2 describes the Spark's mode of operation.

2.3 GPU Parallel Computing

GPU is designed for graphics processing. Unlike the CPU's serial design pattern, GPU not

only has natural parallel characteristic, but also has more obvious advantages on floating-point

processing power and memory bandwidth than that of CPU, which contributed majorly to
GPU’s strong computing power. Due to the high degree of parallelism in graphics processing,

GPU can improve the processing power and memory bandwidth by increasing the parallel

processing unit and the memory control unit.

2766 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

Block 3Block 2

Multithreaded CUDA Program

Block 1Block 0

Block 7Block 6Block 5Block 4

Block 3Block 2Block 1Block 0

Block 7Block 6Block 5Block 4

SM 3SM 2SM 1SM 0

GPU with 4 SMs

Block 1Block 0

Block 3Block 2

SM 1SM 0

GPU with 2 SMs

Block 5Block 4

Block 7Block 6

Fig. 3. GPU Parallel Computing Architecture

3. Related Work

Although compression of datasets is a classical research topic in the database research

community, the idea of exploiting attribute correlations (a.k.a. semantic compression) is

relatively new [3-16]. Many excellent algorithms have been proposed up to now. Jagadish [4]
introduce the notion of fascicles, study two problems related to fascicles, and develop

algorithms to attack both of the above problems. Moreover, a semantic compression algorithm

called ItCompress Iterative Compression is proposed in [3], which achieves good compression
while permitting access even at attribute level without requiring the decompression of a larger

unit. However, the number of iterative is huge in the case of big data. SPARTAN [5] is a

system that takes advantage of attribute semantics and data-mining models to perform lossy

compression of massive data tables, which is based on the novel idea of exploiting predictive
data correlations and prescribed error tolerances for individual attributes to construct concise

and accurate Classification and Regression Tree (CaRT) models for entire columns of a table.

Wei [6] propose an effective compression approach based on on-line semantic clustering of
GML documents. The approach deals with a GML document under compression on the fly via

separating data from structures, clustering data based on the semantic similarities exploited

from tags and texts, dictionary-encoding structures and delta-encoding geometric coordinate
data before the general text compression on back end. David [7] outlines how Lossy

Compression, a branch of Information Theory relating to the compact representation of data

while retaining important information, can be applied to the Worst Case Execution Time

analysis problem. In [8], a compression algorithm(2P2D), which exploits the obtained group
movement patterns to reduce the amount of delivered data. The compression algorithm

includes a sequence merge and an entropy reduction phases. However, the method is not really

distributed. Wang [9] proposed several search space pruning methods and designed an
efficient algorithm called SUMMARY. However, their work only supports categorical

attributes. Other effective algorithms are proposed [10-21], but all have the shortcoming that

can not handle a large scale data effectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2767

Huffman Coding is used to compress attributes [22-24]. The major contribution of
Raman’s work [23] is that they formalized the old idea of compressing ordered sequences by
storing the difference between adjacent elements, which has been used in search engines to

compress inverted indexes [22, 28]. Stonebraker [24] presents the design of a read-optimized

relational DBMS that contrasts sharply with most current systems, which are write-optimized.

Bayesian networks are well-known general purpose probabilistic models to characterize
dependencies between random variables [25-31]. SPARTAN [26] uses a Bayesian network
structure to guide the selection of CaRT models that minimize the overall storage requirement,

based on the prediction and materialization costs for each attribute. Algorithms for

automatically learn Bayesian networks and new structures called "Huffman networks" that
model statistical relationships in the datasets are proposed, and algorithms for using these

models to then compress the datasets [25]. SQUISH [28] is a system that uses a combination of

Bayesian Networks and Arithmetic Coding to capture multiple kinds of dependencies among

attributes and achieve near-entropy compression rate.

In recent year, a few scholars have begun to study parallel compression algorithms to
speedup the running the operation [33-36]. Cheng [33] proposes an efficient algorithm for fast

encoding large Semantic Web data, and present the detailed implementation of proposed

approach based on the state-of-art asynchronous partitioned global address space (APGAS)

parallel programming model. Urbani [34] researches and proposes a MapReduce algorithm
that efficiently compresses and decompresses a large amount of Semantic Web data.

Afterwards proposes a set of distributed MapReduce algorithms to efficiently compress and

decompress a large amount of RDF data [35]. However, the research in parallel computing is
still rare. Moreover, all of research stay still in Hadoop1.0 phase. In view of this, we will

propose a parallel computing algorithm based on GPU and a distributed algorithm based on

Spark through analysing and optimizing ItCompress algorithm.

4. Selection Method of Representative Rows

The key point of the ItCompress algorithm lies in the selection of the representative rows, and
the selection of representative rows is obtained by improving step by step through iterations.

The more each attribute value of selected representative row matches the corresponding

attribute value in the corresponding table T (i.e., the error threshold is not exceeded), the
greater the number of bits "1", the greater the coverage value, and the better the quality of the

representative row. A large number of experiments have shown that, this selection method can

efficiently extract the best representative rows, whose essence is exhaustive comparison.

However, in the case of massive data, the method is greatly challenged. In order to obtain the
maximum coverage value and the totalcov value, it is necessary to compare each row of the

entire table T, which will inevitably cause the rapid expansion of the workload. In order to deal

with large-scale datasets, we propose a bidirectional ordered selection method based on
interval partitioning. The main idea of the method is as follows:

(1) First of all, the value of the numeric attribute of table T is pre-computed and sorted.
Take table T in Fig. 1 as an example to sort table T and get Fig. 4.

(2) In order to reduce the uncertainty and efficiency brought by randomly selected attribute
values, we divide the entire table T according to the number of selected representative rows.

For example, if the number of rows of table T is n, the whole algorithm needs to select d
representative rows, then we divided the table T into d intervals, the number of data line in

each section is  dn / .

2768 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

age salary assets credit sex

20 15000 25000 poor male

25 30000 75000 good female

30 35000 100000 good female

40 50000 125000 poor male

50 76000 150000 good female

60 90000 175000 good male

70 100000 200000 poor female

75 110000 250000 poor male
Fig. 4. Table To After Sorting

(3) The value of the intermediate point element is selected as the initial value of the first
iteration from each numeric type attribute of each partition, and the totalcov between them and

the data row in table T is computed, as shown in Fig. 5 (25, 30000, 75000, good, female) and
(60, 90000, 175000, good, male), the first and last rows of data in each interval are labeled.

The second iteration starts from the intermediate data row and then goes upward and

downward both ways simultaneously to compare. Once there is a row, whose numeric type

data value exceeds the error threshold, the iteration is ended, and the rest of the data lines are
all discarded.

(4) Through this optimization iterative way, a large number of data rows that are not
satisfied is cleaned up in advance, and efficiency is greatly improved by avoiding unnecessary

calculation of consumption. This method is similar to pruning.

age salary assets credit sex

20 15000 25000 poor male

25 30000 75000 good female

30 35000 100000 good female

40 50000 125000 poor male

50 76000 150000 good female

60 90000 175000 good male

70 100000 200000 poor female

75 110000 250000 poor male
Fig. 5. The Intermediate Data Rows Selected In the First Iteration

5. Parallel Processing of Optimization Iterative Semantic Compression
Algorithm

5.1 Distributed Implementation in Spark Environment

Distributed Optimization Iteration Compression Algorithm using Spark (referred to as
DOICAS) is designed by iterative RDD. DOICAS algorithm in the cluster achieve distributed

operation by the Drive/Executor process. The pre-processed dataset is stored in HDFS, then

the data is converted into Spark RDD and stored in the memory of the cluster. The data loading
process is described in Fig. 6. The dataset is stored in the HDFS system in the form of Block,

and the SparkContext object converts the data into the RDD stored in the form of Partition

through the textFile method and loads it into memory.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2769

Block

Block

Block

Block

……

Partition

Partition

Partition

Partition

……

Partition

Partition

Partition

Partition

……

DataBlocks RDD 1 RDD n

Fig. 6. The Phase of Loading Data

Algorithm 2 DOICAS

Input: A table T, An ordered table To, a user specified value k, an error tolerance vector e.

Output: A compressed table Tc, a set of representative rows P
1:Driver:

2: Load the dataset To from HDFS to convert to RDD.

3:Executor:

4: The dataset RDD is divided into k intervals, perform a map operation for each interval.

5:Loop:

6: For each section, take the ith row, which i=  kn 2/

7: Compare the data row to each row in table T, and calculate its coverage value

8: i++ or i--

9: Take the i++ and i-- data lines, compared with the table T of each row, which coverage value

calculated

10: If the numeric property value has a value greater than error tolerance, it ends. So each interval

acquire a representative row

11:End Loop

As shown in Algorithm 2, on each work node, the dataset is extracted as a row unit and
converted to a row wrapper class instance so that the dataset RDD is converted into a new

RDD stored in memory. The task of the Drive process is to read the dataset and convert it. The

Executor process performs a comparison, computes a coverage, and so on to generate the final
compressed data and representative rows.

5.2 Parallel Implementation in GPU Environment

Preprocessing

Module

Dataset Circular

Buffer

Representative

Rows Selection

Compressed

Table Acquisition

Circular

Buffer

Format

Arrangement

CPU Processing

GPU Processing

Fig. 7. Optimized Iterative Semantic Compression Algorithm Based on GPU

GPU parallel computing principle is a SIMT (Single Instruction Multiple Thread) mode, that

is, a bunch of threads to execute the same instruction, but the processing data can be different.

2770 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

Therefore, in order to give full play to the GPU parallel computing power, the key is a

reasonable allocation of each thread to deal with the data, and strive to deal with the amount of
data between the threads more balanced. Because CUDA provides a parallel programming

model based on thread grid, CUDA's kernel function is used to realize the iterative semantic

compression algorithm using GPU. The important task is to divide the thread grid.

Based on the idea of bidirectional ordered selection based on interval partitioning, we
present the Parallel Optimization Iterative Compression Algorithm Using GPU (referred to as
POICAG), as shown in Algorithm 3. Assuming that the number of stream processors of the

GPU is Pnum, the number of dataset rows is n, grouped according to Equation (1), the number

of rows in each group is
Row=n/Pnum (1)

Algorithm 3 POICAG

Input: inputPath[100], paraPath[100], numDim, numSample, k, maxIter

Output: k representative rows

Procedure:
1: Threads=Pnum/Blocks // Number of threads per block

2: Threadi=blockIdx.x*blockDim.x+threadIdx.x // The global number of the thread

3: start_row=Threadi*Row // Label the first line number of each group

4: end_row=Threadi*Row+Row // Label the last line number of each group

5: mid_row=(start_row+end_row)/2 // Obtain the middle line number for each group

6: for mid_row to start_row // Compares each upward row in turn

7: for mid_row to end_row // Compares each downward row in turn

8: //initialization

9: srand(100);

10: cudaSetDevice(0); int i, j, nearest, *member, *tolerance,* aspace, *numValues;

11: //input parameter declaration
12: int numDim, numSample, k, maxIter; char inputPath[100], paraPath[100];

13: //check and read input parameters

14: strcpy(inputPath, argv[1]); // input file path

15: strcpy(paraPath, argv[2]); // parameter file path

16: sscanf(argv[3], "%d", &numDim); // number of dimension

17: sscanf(argv[4], "%d", &numSample); // number of samples

18: sscanf(argv[5], "%d", &k); // number of centers

19: sscanf(argv[6], "%d", &maxIter); // maximum iteration

20://initialize member data

21: cudaMallocManaged(&member, sizeof(int) * numSample);

22: cudaMallocManaged(&numMatch, sizeof(int) * numSample);

23: cudaMemset(member, 1, sizeof(int) * numSample);
24://initialize input data

25: cudaMallocManaged(&input, sizeof(int) * numDim * numSample);

26: readRow(inputFile, input, numDim * numSample);

27://initialize parameter data

28://read number of different value in each attribute (1st row)

29: cudaMallocManaged(&numValues, sizeof(int) * numDim);

30: readRow(paraFile, numValues, numDim);

31://read range of tolerance for each attribute (2nd row)

32: cudaMallocManaged(&tolerance, sizeof(int) * numDim);

33: readRow(paraFile, tolerance, numDim);

34:// read storage requirement of each attribute (3rd row)
35: cudaMallocManaged(&aspace, sizeof(int) * numDim);

36: readRow(paraFile, aspace, numDim);

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2771

37:/* initialize center and cluster data */

38: cudaMallocManaged(¢er, sizeof(int) * k * numDim);

39: cudaMallocManaged(&ccenter, sizeof(int) * k);

40: for (i = 0; i < k; ++i) do

41: ccenter[i] = numDim;

42://pick k centers

43: for (i = 0; i < k; ++i) do

44: dim3 blockSize(BLOCK_SIZE, BLOCK_SIZE, 1);
45: dim3 gridSize(ceil(numDim, BLOCK_SIZE), ceil(k, BLOCK_SIZE), 1);

46:// compute initial centers

47: computeCenter<<<gridSize, blockSize>>>(clusterInfoDim,

48: numValues, tolerance, columnMatch, center, numDim, k);

49://iteration

50: for (int it = 0; it < maxIter; ++it) do

51: {//move this loop to a separate function//// GPU call

52: for (i = 0; i < k; ++i) do

53: {

54: for (j = 0; j < numDim; ++) do

55: printf("%d ", center[i * numDim + j]);
56: }

57: }

POICAG is shown as Algorithm 3, in which, part of Grouping Computing is described
from step 1 to 7, and the rest is the main part of POICAG.

6.Performance Evaluation

Aimed to the distributed algorithm using Spark DOICAS, according to the literature [Ran Jin,

2], we build a cloud platform with 8 computers, installed JDK1.8.0 and Spark-1.5.2, the

specific configuration information is as follows:

Table 1. Cluster Configuration

Item Personal Computer Server

Memory(GB) 8 128

Hard Disk(GB) 512 1000

Processor(GHz) Intel Core(TM) i7-5500U 2.4GHz Intel Xeon 2.0

Core Number 4 24

OS CenOS6.6 CenOS6.6

We implement the GPU-based parallel algorithm POICAG with CUDA C. The client
computers are equipped with Intel Core (TM) i7-5500U 2.4GHz processor, and 8GB memory,

64-bit OS. GPU servers use the high performance GPU computing cluster by the school of
computing of National University of Singapore(NUS). The Configuration information is listed

in Table 1.

The experimental datasets are shown as following:

We implement the GPU-based parallel algorithm POICAG with CUDA C. The client
computers are equipped with Intel Core (TM) i7-5500U 2.4GHz processor, and 8GB memory,
64-bit OS. GPU servers use the high performance GPU computing cluster by the school of

computing of National University of Singapore(NUS).

2772 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

(1)NHL Dataset

(2)Sponge Dataset [Vibhav Vineet, 3]

(3)RoadSafe Dataset(https://data.gov.uk/data/)

(4)KDD Cup1999 Dataset (http://archive.ics.uci.edu/ml/datasets/)

For the sake of experiment convenience, we clean the datasets and delete the insignificant
attributes, the final datasets information is shown in Table 2. Among them, the NHL dataset is

our artificial simulation dataset, Road Safe Dataset is the safety data about the British road

accident and personal casualties. In order to avoid chance, we run ten times for each dataset,
and remove the maximum and minimum, and finally take the average. For example, NHL

dataset in the CPU stand-alone mode running 10 times the results shown in Fig. 8, removing

the maximum value 0.051 and the minimum value 0.021.

Table 2. Dataset Information

Dataset Tuples Attributes

NHL 856 13

Sponge 2400 10

Road Safe 141663 17

KDD Cup1999 4000000 42

Fig. 8. Results of The Ten Runs of The NHL Dataset in The CPU Stand-alone Mode

6.1 Comparison in GPU Mode

(1)Running Time

In order to verify the effectiveness of POICAG (Parallel Optimized Iterative Compression
Algorithm Using GPU) proposed in this paper, we compare it with that in CPU stand-alone

mode. For different numbers of datasets, we set different k values (the number of selected

rows).

1.237

0.0484

0

0.2

0.4

0.6

0.8

1

1.2

1.4

GPU CPU

R
u

n
n

in
g
 T

im
e
(s

)

Different Modes

NHL Dataset

1.868

1.134

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GPU CPU

R
u

n
n

in
g
 T

im
e
(s

)

Different Modes

Sponge Dataset

10.676

27.538

0

5

10

15

20

25

30

GPU CPU

R
u

n
n

in
g
 T

im
e
(s

)

Different Modes

Road Safe Dataset

32.185

432.742

0

50

100

150

200

250

300

350

400

450

500

GPU CPU

R
u

n
n

in
g
 T

im
e
(s

)

Different Modes

KDD Cup 1999 Dataset

Fig. 9. Four Datasets in the CPU and GPU Mode Running Time

We can be seen from Fig. 9, as the amount of data continues to grow, the advantages of

GPU parallel computing highlights, and execution time surge in CPU stand-alone mode. It is
conceivable that CPU mode running will encounter a huge bottleneck problem when the

amount of data increased to T, P level. As the NHL Dataset data volume is small, CPU mode

operation has certain advantages. Whereas GPU mode running time is 25.558 times that of the
CPU mode, when processing Sponge Dataset, the ratio is reduced to 1.647 times. When

dealing with the Road Safe Dataset, the GPU only needs 10.676 seconds and the time is nearly

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2773

1/3 of the CPU mode. When dealing with KDD Cup1999 Dataset, GPU advantage is more

obvious, running only about 1/13 of the CPU. So GPU is an efficient tool to handle large-scale
data.

Table 3. Comparison of run time between ItCompress and Optimized ItCompress

 NHL Dataset Sponge Dataset Road Safe Dataset KDD Cup1999

ItCompress

Using GPU
1.398(s) 2.118(s) 13.741(s) 36.813(s)

POICAG 1.237(s) 1.868(s) 10.676(s) 32.185(s)

In order to verify the effectiveness of POICAG (Parallel Optimized Iterative Compression
Algorithm Using GPU) proposed in this paper, we use the above four datasets to compare the

ItCompress algorithm using GPU with POICAG. The results are shown in Table 3.

(2) Compress Ratio under Different k

Table 4. Different k Values Influence On the Dataset Compression Ratio (一)

NHL Dataset Sponge Dataset

k=50 k=300 k=500 k=50 k=300 k=500

ItCompress

0.313 0.202 0.196 0.332 0.231 0.225

0.293 0.209 0.201 0.312 0.235 0.229

0.289 0.211 0.205 0.310 0.242 0.231

0.327 0.199 0.187 0.342 0.219 0.213

0.318 0.202 0.198 0.332 0.235 0.223

0.302 0.205 0.201 0.319 0.230 0.230

0.315 0.210 0.202 0.330 0.239 0.227

0.299 0.206 0.201 0.311 0.234 0.235

0.314 0.204 0.199 0.332 0.228 0.227

0.302 0.205 0.200 0.318 0.232 0.232

Compress
Ratio

(Optimized
ItCompress)

0.334 0.214 0.208 0.354 0.246 0.237

0.325 0.220 0.213 0.342 0.252 0.252

0.312 0.217 0.210 0.335 0.239 0.243

0.330 0.207 0.212 0.349 0.232 0.234

0.327 0.209 0.199 0.342 0.235 0.237

0.318 0.212 0.203 0.332 0.239 0.240

0.329 0.216 0.208 0.344 0.243 0.237

0.331 0.207 0.200 0.349 0.231 0.229

0.329 0.213 0.202 0.343 0.242 0.232

0.322 0.215 0.203 0.341 0.244 0.236

Compress
Ratio

(POICAG)

0.320 0.210 0.201 0.338 0.235 0.238

0.319 0.223 0.209 0.335 0.251 0.231

0.327 0.209 0.199 0.346 0.241 0.230

2774 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

0.330 0.211 0.206 0.352 0.243 0.233

0.323 0.213 0.202 0.339 0.239 0.234

0.327 0.210 0.200 0.341 0.237 0.228

0.327 0.213 0.203 0.343 0.241 0.231

0.329 0.215 0.207 0.344 0.245 0.235

0.331 0.217 0.205 0.353 0.244 0.233

0.328 0.212 0.203 0.340 0.240 0.230

Table 5. Different k Values Influence On the Dataset Compression Ratio (二)

Road Safe Dataset KDD Cup1999

k=50 k=300 k=500 k=50 k=300 k=500

ItCompress

0.503 0.412 0.401 0.698 0.623 0.612

0.506 0.405 0.393 0.712 0.628 0.615

0.511 0.409 0.390 0.703 0.641 0.620

0.513 0.415 0.402 0.692 0.621 0.616

0.497 0.401 0.388 0.694 0.619 0.609

0.502 0.412 0.400 0.696 0.627 0.617

0.507 0.415 0.403 0.702 0.631 0.621

0.511 0.406 0.393 0.711 0.634 0.613

0.494 0.401 0.391 0.708 0.629 0.619

0.500 0.411 0.392 0.699 0.633 0.623

Compress
Ratio

(Optimized
ItCompress)

0.531 0.423 0.414 0.721 0.629 0.618

0.527 0.414 0.401 0.730 0.638 0.627

0.529 0.411 0.400 0.718 0.631 0.630

0.532 0.420 0.406 0.719 0.627 0.624

0.535 0.422 0.414 0.723 0.620 0.611

0.526 0.414 0.403 0.730 0.632 0.618

0.530 0.421 0.412 0.722 0.628 0.616

0.528 0.412 0.401 0.710 0.632 0.622

0.531 0.417 0.403 0.711 0.629 0.614

0.528 0.414 0.402 0.714 0.630 0.619

Compress
Ratio

(POICAG)

0.537 0.423 0.411 0.734 0.626 0.621

0.531 0.421 0.410 0.727 0.641 0.623

0.533 0.424 0.413 0.733 0.637 0.619

0.539 0.423 0.412 0.725 0.632 0.621

0.541 0.430 0.418 0.723 0.630 0.623

0.543 0.429 0.415 0.719 0.633 0.620

0.538 0.415 0.402 0.731 0.634 0.614

0.544 0.433 0.421 0.726 0.641 0.622

0.540 0.428 0.415 0.728 0.637 0.615

0.537 0.424 0.410 0.729 0.642 0.621

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2775

The k representative rows is preselected randomly for ItCompress and POICAG (Parallel
Optimized Iterative Compression Algorithm Using GPU). In order to examine whether the
difference in k value has an effect on compression performance when more or fewer

representative rows are selected, we varied k, and again repeated ten times with different

random initial representative rows for each k value. For the same reason, we also repeated the

experiment with four datasets. The experimental results are shown in Table 4 and Table 5
where each column represents one set of ten repetitions for a selected dataset and specified

value of k. As can be seen, all values in any column are almost identical, indicating that the

variance in compression ration is insignificant for all the four datasets with the value of k
ranging from 50 to 500 due to different random initialization. Therefor, we believe that both

the compression ration of POICAG and Optimized ItCompress are stable although the random

initialization. Meanwhile, the two improved algorithms maintain a good compression rate as
seen from the experimental results. In contrast, the POICAG algorithm has better stability, the

value changes even smaller.

6.2 Comparison in Spark Mode

(1)Test of Speedup Ratio

Speedup ratio is defined by parallel computing to reduce the running time and improve the
performance of obtained. It is an important indicator to verify the performance of parallel

computing. The greater speedup ratio is, it’s indicating that the less time parallel computing
consume relatively, and the higher parallel efficiency and performance improve. Under

changing the number of Hadoop cluster nodes, respectively use the results of speedup ratio

performance tests according to above four datasets. Table 6 is the running time of datasets

under different nodes. Table 6 and Fig. 10 show the results.

Table 6. Comparison of running time and speedup

Dataset Nodes Total Time(sec) Speedup

NHL Dataset

1 0.0484 1

2 1.1293 0.043

4 0.9319 0.052

6 0.8726 0.055

8 0.6942 0.070

Sponge Dataset

1 1.134 1

2 1.792 0.633

4 1.325 0.856

6 1.185 0.957

8 0.976 1.162

Road Safe Dataset

1 27.538 1

2 15.772 1.746

4 9.261 2.974

6 6.271 4.391

8 4.809 5.726

KDD Cup 1999

1 432.742 1

2 38.026 11.380

4 21.854 19.802

6 8.629 50.150

8 6.812 63.526

2776 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8

S
p

e
e
d

u
p

Number of nodes

NHL Dataset

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8

S
p

e
e
d

u
p

Number of nodes

Sponge Dataset

0

1

2

3

4

5

6

1 2 4 6 8

S
p

e
e
d

u
p

Number of nodes

Road Safe Dataset

0

10

20

30

40

50

60

70

1 2 4 6 8

S
p

e
e
d

u
p

Number of nodes

KDD Cup 1999 Dataset

Fig. 10. Speedup Ratio Performance Test

From the experimental results as shown in Table 6, we can see that when the Spark
distributed platform has only one computer, it is actually degraded into stand-alone CPU mode.

With the increase of the number of computers in the platform, the running speed of the dataset

is also increase. However, when dealing with the smaller amount of data NHL dataset and
Sponge dataset, the advantage of Spark platform is not reflected, basically much slower than

the stand-alone mode. For example, in the NHL dataset, the running time of two nodes is

1.1293, which is equivalent to that of GPU parallel mode, yet is nearly 25 times slower than

the stand-alone mode. The reason is that Spark distributed platform is a large frame structure
that needs to support multiple modules, and there is no advantage in dealing with the small

amount of data. But with the increase in the number of nodes, running time gradually reduced,

the acceleration ratio gradually increased, but not obvious. In dealing with large-scale dataset
KDD Cup1999, CPU stand-alone mode will encounter a small bottleneck, running time

consumption is very large, while the Spark cloud platform shows its value, and the running

time on which with two nodes is about one eleventh that of stand-alone mode.

(2)Analysis of scalability

According to the paper [Ran Jin, 37], the formula is η=Sp/N，wherein, Sp represents the

speedup ratio, N means the number of cluster nodes. Fig. 11 shows the efficiency of parallel

algorithms proposed in the paper.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8

S
c
a
le

u
p

Number of nodes

NHL Dataset

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8

S
c
a
le

u
p

Number of nodes

Sponge Dataset

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8

S
c
a
le

u
p

Number of nodes

Road Safe Dataset

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8

S
c
a
le

u
p

Number of nodes

KDD Cup 1999 Dataset

Fig. 11. Expansion Rate Performance Test

Fig. 11 depicts the experimental results on the four datasets. We can find from it: (1) Under
the large scale dataset, with the cloud platform work node increases, running time is gradually

reduced; (2) In addition to the small dataset NHL, although the performance of different

dataset is various, the parallel algorithm using Spark show a basic linear rule between the work
nodes and the speedup ratio.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2777

6.3 Effectiveness Comparison of Algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 2 4 6 8 10

C
o
m

p
r
e
ss

io
n

 R
a
ti

o

Er ror Tolerance

NHL Dataset
SQUISH APGAS

SWSM ItCompress

POICAG DOICAS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 2 4 6 8 10

C
o
m

p
r
e
ss

io
n

 R
a
ti

o

Er ror Tolerance

Sponge Dataset
SQUISH APGAS

SWSM ItCompress

POICAG DOICAS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 2 4 6 8 10

C
o
m

p
r
e
ss

io
n

 R
a
ti

o

Er ror Tolerance

Road Safe Dataset

SQUISH APGAS

SWSM ItCompress

POICAG DOICAS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 2 4 6 8 10

C
o
m

p
r
e
ss

io
n

 R
a
ti

o

Er ror Tolerance

KDD Cup1999 Dataset

SQUISH APGAS

SWSM ItCompress

POICAG DOICAS

Fig. 12. Error Threshold vs Compression Ratio

Here, We compare POICAG and DOICAS with the other compression algorithms according to
effectiveness. SQUISH[28], APGAS[33] and SWSM[34] are proposed in recent years, which

have been proved to be effective.

From the graphs in Fig. 12, we can make the following observations: (1) SQUISH

algorithm acquires better performance than others on the NHL dataset and Sponge dataset,
especially when error tolerance threshold is small(0.5%). The main reason is that the encoding

scheme adopted by SQUISH can leverage the skewness of the distribution and achieve

near-optimal performance. (2) For pure semantic compression, the compressed tables
produced by ItCompress achieves about 50% reduction in compression ratio in NHL dataset

and Sponge dataset, compared to SWSM. But ItCompress is worse when the number of dataset

is large. (3) In Road Safe dataset and KDD Cup1999 dataset, the performance of POICAG and
DOICAS is far better than ItCompress, and also than other algorithms. A bidirectional ordered

selection method based on interval partitioning is a main reason. In contrast, DOICAS is

slightly better than POICAG

2778 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

7.Conclusion

Relational datasets are being generated at an alarmingly rapid rate across organizations and

industries. Compressing these datasets could significantly reduce storage and archival costs.
Traditional compression algorithms, e.g., gzip, are suboptimal for compressing relational

datasets since they ignore the table structure and relationships between attributes. The existing

semantic compression algorithms face many challenges, such as too many iterations, the
random selection of representative rows, not adapt to large scale datasets and so on. In this

paper, we firstly analyze the ItCompress algorithm, and design a bidirectional ordered

selection method based on interval partitioning, then propose an Optimized Iterative Semantic

Compression Algorithm. On the basis of this, we further propose a Parallel Optimized
Iterative Compression Algorithm Using GPU(POICAG) and Distributed Optimization

Iterative Compression Algorithm Using Spark(DOICAS), using GPU environment and Spark

computing framework respectively. A lot of valid experiments are carried out on four kinds of
datasets. The efficiency of the proposed algorithm is verified by the comparison of speedup,

scalability scalability, running time and so on.

ACKNOWLEDGMENT

This work was supported by the Postdoctoral Research Project of Zhejiang Province, and by

the National Natural Science Foundation of China under grant no. 61472348 and 61672455,
and by the Humanities and Social Science Fund of the Ministry of Education of China under

Grant No. 17YJCZH076, and by Zhejiang Science and Technology Project under Grant No.

LGF18F020001, and by the Ningbo Natural Science Foundation under Grant No.
2017A610111.

References

[1] Promhouse G and Bennett M., “Semantic Data Compression,” in Proc. of Data Compression

Conference, pp. 323-331, April 8-11, 1991. Article (CrossRef Link).

[2] Schmalz Mark S., “An overview of semantic compression,”in Proc. of SPIE, pp. 1493-1495,

August 20, 2010. Article (CrossRef Link).

[3] Jagadish H V, Ng R T, Ooi B C and Anthony K H Tung, “ItCompress: An Iterative Semantic

Compression Algorithm,” in Proc. of 20th International Conference on Data

Engineering(ICDE'04), pp. 646-657, March 5, 2004. Article (CrossRef Link).

[4] Jagadish H V, Madar J, Ng R, “Semantic Compression and Pattern Extraction with Fascicles,” in

Proc. 1999 International Conference Very Large Data Bases(VLDB'99), pp. 186-197, September
7-10, 1999. Article (CrossRef Link).

[5] Babu S, Garofalakis M, Rastogi R, “SPARTAN: A Model-based Semantic Compression System

for Massive Data Tables,” in Proc. of ACM SIGMOD'2001 International Conference on

Management of Data, pp. 22-49, May 21-24, 2001. Article (CrossRef Link).

[6] Wei Qingting, Guan Jihong, “A GML Compression Approach Based on On-line Semantic

Clustering,” in Proc. of the 18th International Conference on Geoinformatics, pp. 1-7, June 18-20,

2010. Article (CrossRef Link).

[7] Griffin David, Lesage Benjamin, Burns Alan and RI Davis, “Lossy Compression for Worst-Case

Execution Time Analysis of PLRU Caches,” in Proc. of the 22nd International Conference on

Real-time Networks and Systems, pp. 203-212, October 8-10, 2014. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/DCC.1991.213348
http://dx.doi.org/doi:10.1117/12.864279
http://dx.doi.org/doi:10.1109/ICDE.2004.1320034
http://xueshu.baidu.com/s?wd=paperuri%3A%2829c1c7d62487f62cf9dccefc283c2e30%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D671667&ie=utf-8&sc_us=3420802548879357508
http://dx.doi.org/doi:10.1145/376284.375693
http://dx.doi.org/doi:10.1109/GEOINFORMATICS.2010.5567910
http://dx.doi.org/doi:10.1145/2659787.2659807

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2779

[8] Hsiao-Ping Tsai, De-Nian Yang and Ming-Syan Chen, “Exploring

Application-Level Semantics for Data Compression,” IEEE Transactions on Knowledge and Data

Engineering, vol. 23, no.1, pp. 95-109, February, 2011. Article (CrossRef Link).

[9] J. Wang and G. Karypis, “On Efficiently Summarizing Categorical Databases,” Knowledge and

Information Systems, vol. 9, no. 1, pp. 19-37, January, 2006. Article (CrossRef Link).

[10] R. Saint-Paul, G. Raschia and N. Mouaddib, “General Purpose Database Summarization,” in Proc.

of the 31st International Conference on Very Large Databases (VLDB 2005), pp. 733-744, August
30- September 2, 2005. Article (CrossRef Link).

[11] Pham Quang-Khai, Raschia Guillaume and Mouaddib Noureddine, “Time Sequence

Summarization to Scale up Chronology-dependent Applications,” in Proc. of the 18th ACM

Conference on Information and Knowledge Management, pp. 1137-1146, November 2-6, 2009.

Article (CrossRef Link).

[12] Li Liu, Lifang Wang and Chin-Chen Chang, “A Semantic Compression Scheme for Digital

Images Based on Vector Quantization and Data Hiding,” Multimedia Tools and Applications, pp.

1-14, 2016. Article (CrossRef Link).

[13] Lakshmanan Laks V S, Pei Jian and Zhao Yan, “Efficacious Data Cube Exploration

by Semantic Summarization and Compression,” in Proc. of the 29th International Conference on

Very Large Data Bases(VLDB'03), pp. 1125-1128, September 9-12, 2003.
Article (CrossRef Link).

[14] Pham Quang-Khai, Saint-Paul Regis and Benatallah Boualem, “Mine Your Own Business, Mine

Others' News!,” in Proc. of the 11th International Conference on Extending Database Technology,

pp. 725-729, March 25-29, 2008. Article (CrossRef Link).

[15] Balaji J, Geetha T.V and Parthasarathi Ranjani, “Abstractive Summarization: A Hybrid Approach

for the Compression of Semantic Graphs,” International Journal on Semantic Web and

Information Systems (IJSWIS), vol. 12, no. 2, pp. 76-99, April, 2016. Article (CrossRef Link).

[16] Zhang Wei, “Graph-based Large Scale RDF Data Compression,” in Proc. of the 37th International

ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1276-1276,

July 6-11, 2014. Article (CrossRef Link).

[17] Che Wanxiang, Zhao Yanyan and Guo Honglei, “Sentence Compression for Aspect-based

Sentiment Analysis,” IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP), vol. 23, no. 12, pp. 2111-2124, December, 2015. Article (CrossRef Link).

[18] Feldman Dan, Sung Cynthia and Sugaya Andrew, “iDiary: From GPS Signals to A

Text-Searchable Diary,” ACM Transactions on Sensor Networks (TOSN), vol. 11, no. 4, pp. 1-41,

December, 2015. Article (CrossRef Link).

[19] Cuzzocrea Alfredo and Chakravarthy Sharma, “Event-based Lossy Compression for Effective and

Efficient OLAP over Data Streams,” Data & Knowledge Engineering, vol. 69, no. 7, pp. 678-708,

July, 2010. Article (CrossRef Link).

[20] Drinić Milenko, Kirovski Darko and Vo Hoi, “PPMexe: Program Compression,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 29, no. 1, pp. 3-es, January,

2007. Article (CrossRef Link).

[21] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang and L. Liu, “TripleBit: A Fast and Compact system for
large scale RDF data,” in Proc. of the VLDB Endowment, vol. 6, nol. 7, pp. 517-528, May, 2013.

Article (CrossRef Link).

[22] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval,” ACM press, pp. 463-466,

1999. Article (CrossRef Link).

[23] V. Raman and G. Swart, “How to wring a table dry: Entropy Compression of Relations and

querying of Compressed Relations,” in Proc. of the 32nd International Conference on Very large

data bases, pp. 858-869, September 12-15, 2006. Article (CrossRef Link).

[24] M. Stonebraker, D. J. Abadi, A. Batkin, et al., “C-store: A Column-oriented DBMS,” in Proc. of

the 31st International Conference on Very Large Data Bases, pp. 553-564, August 30-September 2,

2005. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/TKDE.2010.30
http://dx.doi.org/doi:10.1007/s10115-005-0216-7
http://www.vldbarc.org/archives/website/2005/program/paper/thu/p733-saint-paul.pdf
http://dx.doi.org/doi:10.1145/1645953.1646098
https://link.springer.com/journal/11042
http://dx.doi.org/doi:10.1007/s11042-016-4011-0
http://dx.doi.org/doi:10.1016/B978-012722442-8/50121-X
http://dx.doi.org/doi:10.1145/1353343.1353436
http://dx.doi.org/doi:10.4018/IJSWIS.2016040104
http://dx.doi.org/doi:10.1145/2600428.2610377
http://dx.doi.org/doi:10.1109/TASLP.2015.2443982
http://dx.doi.org/doi:10.1145/2814569
http://dx.doi.org/doi:10.1016/j.datak.2010.02.006
http://dx.doi.org/doi:10.1145/1180475.1180478
http://dx.doi.org/doi:10.14778/2536349.2536352
https://dl.acm.org/citation.cfm?id=553876
http://xueshu.baidu.com/s?wd=paperuri%3A%28ada16b44882a2ac65ab9e91ddecc5493%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.103.817&ie=utf-8&sc_us=13150941389308780893
http://xueshu.baidu.com/s?wd=paperuri%3A%28a52b94f938f8fc51c1103e16db42bdfd%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1083658&ie=utf-8&sc_us=11697902084012744403

2780 Jin et al.: An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

[25] S. Davies and A. Moore, “Bayesian Networks for Lossless Dataset Compression,” in Proc. of the

5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

387-391, August 15-18, 1999. Article (CrossRef Link).

[26] Babu S, Garofalakis M and Rastogi R., “SPARTAN: Using Constrained Models for

Guaranteed-error Semantic Compression,” SIGKDD Explorations, vol. 4, no. 2, pp. 11-20, June,

2002. Article (CrossRef Link).

[27] G. Schwarz, “Estimating the Dimension of A Model,” Annals of Statistics, vol. 6, no. 2, pp.
461-464, March, 1978. Article (CrossRef Link).

[28] Gao Yihan and Parameswaran Aditya, “Squish: Near-Optimal Compression for Archival of

Relational Datasets,” in Proc. of the 22nd ACM SIGKDD International Conference on knowledge

discovery and data mining, pp. 1575-1584, August 13-17, 2016. Article (CrossRef Link).

[29] J. Rissanen, “Generalized Kraft Inequality and Arithmetic Coding,” IBM Journal of Research and

Development, vol. 20, no. 3, pp. 198-203, May, 1976. Article (CrossRef Link).

[30] G. G. Langdon Jr, “An Introduction to Arithmetic Coding,” IBM Journal of Research and

Development, vol. 28, no. 2, pp. 135-149, March, 1984. Article (CrossRef Link).

[31] I. H. Witten, R. M. Neal and J. G. Cleary, “Arithmetic Coding for Data compression,”

Communications of the ACM, vol. 30, no. 6, pp. 520-540, June, 1987. Article (CrossRef Link).

[32] M. M. Gaber, A. Zaslavsky and S. Krishnaswamy, “Mining Data Streams:A review,” ACM
Sigmod Record, vol. 34, no. 2, pp. 18-26, June, 2005. Article (CrossRef Link).

[33] Cheng Long, Malik Avinash and Kotoulas Spyros, “Fast Compression of Large Semantic Web

Data Using X10,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 9, pp.

2603-2617, September, 2016. Article (CrossRef Link).

[34] Urbani Jacopo, Maassen Jason and Bal Henri, “Massive Semantic Web data compression with

MapReduce,” in Proc. of the 19th ACM International Symposium on High Performance

Distributed Computing, pp. 795-802, June 21-25, 2010. Article (CrossRef Link).

[35] Urbani J., Maassen N., Drost F. and Seinstra H. Bal, “Scalable RDF Data Compression with

MapReduce,” Concurrency & Computation Practice & Experience, vol. 25, no. 1, pp. 24-39,

January, 2013. Article (CrossRef Link).

[36] Tan Yujuan, Jiang Hong and Feng Dan, “SAM: A Semantic-Aware Multi-tiered Source

De-duplication Framework for Cloud Backup,” in Proc. of the 39th International Conference on
Parallel Processing, pp. 614-623, September 13-16, 2010. Article (CrossRef Link).

[37] Ran Jin, Chunhai Kou, Ruijuan Liu and Yefeng Li, “Efficient Parallel Spectral Clustering Algorithm

Design for Large Data Sets under Cloud Computing Environment,” Journal of Cloud Computing, vol.

2, no. 1, December, 2013. Article (CrossRef Link).

http://dx.doi.org/doi:10.1145/312129.312289
http://dx.doi.org/doi:10.1145/568574.568578
http://dx.doi.org/doi:10.1214/aos/1176344136
http://dx.doi.org/doi:10.1145/2939672.2939867
http://dx.doi.org/doi:10.1147/rd.203.0198
http://dx.doi.org/doi:10.1147/rd.282.0135
http://dx.doi.org/doi:10.1145/214762.214771
http://dx.doi.org/doi:10.1145/1083784.1083789
http://dx.doi.org/doi:10.1109/TPDS.2015.2496579
http://dx.doi.org/doi:10.1145/1851476.1851591
http://dx.doi.org/doi:10.1002/cpe.2840
http://dx.doi.org/doi:10.1109/ICPP.2010.69
http://dx.doi.org/doi:10.1186/2192-113X-2-18

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018 2781

Ran Jin received the PhD degree from Donghua University, China, in 2015. He is currently

a postdoctoral fellow in the College of Computer Science and Technology, Zhejiang
University, China. His research interests include data mining, information retrieval and
database.

Gang Chen received the BSc, MSc, and PhD degrees in computer science and engineering

from Zhejiang University in 1993, 1995, and 1998, respectively. He is currently a professor
at the College of Computer Science, Zhejiang University. His research interests include
database, information retrieval, information security, and computer supported cooperative
work. He is also the executive director of Zhejiang University-Netease Joint Lab on Internet
Technology.

Anthony K.H. Tung received the BSc (second class honor) and MSc degrees in computer

science from the National University of Singapore (NUS), in 1997 and 1998, respectively,
and the PhD degree in computer science from Simon Fraser University, in 2001. He is
currently an associate professor in the Department of Computer Science, NUS. His research
interests include various aspects of databases and data mining (KDD) including buffer
management, frequent pattern discovery, spatial clustering, outlier detection, and

classification analysis.

Lidan Shou received the PhD degree in computer science from the National University of

Singapore. He is a professor with the College of Computer Science, Zhejiang University,
China. Prior to joining the faculty, he worked in the software industry for more than two
years. His research interests include spatial database, data access methods, visual and
multimedia databases, and web data mining.

Beng Chin Ooi is currently a distinguished professor of computer science at the National

University of Singapore. His research interests include database system architectures,
performance issues, indexing techniques and query processing, in the context of multimedia,
spatiotemporal, distributed, parallel, peer-to-peer, inmemory, and cloud database systems.
He has served as a PC member for a number of international conferences (including
SIGMOD, VLDB, ICDE, WWW, EDBT, DASFAA, GIS, KDD, CIKM, and SSD). He was
an editor of the VLDB Journal and the IEEE Transactions on Knowledge and Data

Engineering, editor-in-chief of the IEEE Transactions on Knowledge and Data Engineering
(2009–2012), and a co-chair of the ACM SIGMOD Jim Gray Best Thesis Award committee.
He is serving as a trustee board member and the president of the VLDB Endowment. He is a
fellow of the IEEE and ACM.

