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Abstract 
 

Compression is a very important technique for remotely sensed hyperspectral images. The 
lossless compression based on the recursive least square (RLS), which eliminates 
hyperspectral images’ redundancy using both spatial and spectral correlations, is an extremely 
powerful tool for this purpose, but the relatively high computational complexity limits its 
application to time-critical scenarios. In order to improve the computational efficiency of the 
algorithm, we optimize its serial version and develop a new parallel implementation on 
graphics processing units (GPUs). Namely, an optimized recursive least square based on 
optimal number of prediction bands is introduced firstly. Then we use this approach as a case 
study to illustrate the advantages and potential challenges of applying GPU parallel 
optimization principles to the considered problem. The proposed parallel method properly 
exploits the low-level architecture of GPUs and has been carried out using the compute unified 
device architecture (CUDA). The GPU parallel implementation is compared with the serial 
implementation on CPU. Experimental results indicate remarkable acceleration factors and 
real-time performance, while retaining exactly the same bit rate with regard to the serial 
version of the compressor. 
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1. Introduction 

Hyperspectral image compression is an active research topic in remote sensing [1]. It is 
generally known that hyperspectral instruments acquire images in hundreds of narrow and 
continuous spectral bands. Moreover, the data volume of hyperspectral images has been 
drastically increased with the growing scientific and technological demands in spatial and 
spectral resolutions, which poses a significant challenge to data transmission and storage. 
Therefore, there is an increasing need for highly performing image compression techniques. 
Typically, hyperspectral image compression techniques are classified into three modalities: 
lossless, lossy, and near-lossless. However, the last two techniques are unacceptable in many 
of the corresponding applications such as target detection, classification, object identification, 
and automatic feature extraction. As a result, only lossless compression allows for 
reconstructing the original image perfectly. 

Among these three compression methods, lossless compression has received a lot of 
interest [2-5]. Taking into consideration that the Adaptive filter can automatically adjust its 
parameters and achieve the optimal filtering when the input signal and noise statistical 
characteristics are unknown or change, as a technique for the efficient compression of the 
original hyperspectral image with less statistical properties, the adaptive filter has been widely 
used [4-6]. In [6], a novel algorithm for lossless compression of hyperspectral imagery based 
on the recursive least square (RLS) was proposed. This compressor calculates the local 
difference between the local mean of four neighbor of the current pixel and the current pixel, 
and the local differences of the pixels which co-locate with the current pixel in previous bands 
form the input vector of the RLS. The bit rate of this algorithm is comparable or superior to 
that exhibited by many other state-of-the-art techniques. However, its computational 
complexity was shown to be relatively high, thus limiting its application in time-critical 
scenarios. The reason is not only the extremely high dimensionality of hyperspectral data, but 
also that the RLS filter refers to multiple loop iterations of variables for each pixel. This results 
in a computational complexity that is even higher than fast lossless (FL)-based compression 
[4]. 

Recent advances in high-performance computing have opened new avenues to overcome 
the aforementioned computational challenges [7-10]. These high-performance computing 
technologies such as Beowulf clusters and distributed computers, multicore central processing 
units (CPUs), field programmable gate arrays (FPGAs), and graphics processing units (GPUs), 
can be used to accelerate hyperspectral image processing algorithms so as to make them 
suitable for time-critical scenarios. In the above mentioned technologies, GPUs have recently 
emerged as a commodity platform for many compute-intensive, massively parallel, and 
data-intensive computations. GPU-based parallel computing offers a tremendous potential to 
bridge the gap toward real-time compression of hyperspectral images. In [11], a spectral image 
data compression method called Linear Prediction with Constant Coefficients (LP-CC) using 
NVIDIA's CUDA parallel computing architecture was implemented, which achieves a 
speedup of 86 compared to a single threaded CPU version. In [12], two most time consuming 
stages of linear prediction and vector quantization were chosen for GPU-based 
implementation. By exploiting the data parallel characteristics of these two stages, a spatial 
division design showed a speedup of 72x. In [13], the GPU implementation of an algorithm for 
onboard lossy hyperspectral image compression was described, and an architecture that allows 
to accelerate the compression task by parallelizing it on the GPU was proposed. In [14], a 
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partitioning error-resilient entropy coding (P-EREC) algorithm, which splits variable-length 
blocks into groups and then every group is coded using the EREC separately, was proposed. 
Each GPU thread processed one group so as to make the EREC coarse-grained parallel. 32x to 
123x speedup over the original C code of EREC was achieved. In [15] and [16], the CUDA 
toolkit based on GPU was used to design the paprallel algorithms of the all phase biorthogonal 
transform with JPEG scheme (APBT-JPEG) and the all phase discrete sine biorthogonal 
transform with JPEG scheme (APDSBT-JPEG), and their maximum speedup ratios all 
reached more than 100 times. However, to the best of our knowledge, and despite the 
importance of RLS filter methods in the hyperspectral compression, there are no available 
GPU implementations for this category of algorithms in the literature. 

In this paper, we develop a new parallel RLS method for hyperspectral image compression 
on GPUs. First, we introduce an optimized RLS model based on optimal number of prediction 
bands. The method promotes the bit rate by spreading the spectral information from the 
current pixel to its neighbors until achieving a global stable state on the whole image. Then 
this optimized RLS method is used as a case study to illustrate the advantages and potential 
challenges of utilizing GPU parallel computing principles to improve the computation speed 
of the proposed approach. The proposed implementation accelerates intensive computations 
and operations involving large data sets on the GPU by utilizing NVidia’s compute unified 
device architecture (CUDA), executing the rest of the operations (mostly related with control) 
on the CPU. The performance of the proposed GPU-based parallel implementation is assessed 
using real hyperspectral images and compared with the CPU-based serial implementation. The 
remainder of this paper is organized as follows. Section II briefly describes the hyperspectral 
images compression using RLS filter. Section III presents its parallel implementation. 
Experimental results are reported in Section IV. Conclusions with some remarks and hints at 
plausible future research lines are given in Section V. 

2. Optimized Recursive Least Square Method Based on Optimal Number 
of Prediction Bands 

2.1 Recursive Least Square (RLS) 
As an adaptive filtering algorithm, the basic idea of RLS is that given the least square 
estimation of the filter weight vector at time n-1, the iterative method is used to calculate the 
least squares estimation of the filter weight vector at time n. For the above reason, the 
applications of RLS have drawn wide attention in recent years. In [6], it has been proved to be 
an extremely powerful compression tool for hyperspectral image, which has strong 
correlations on both spectral and spatial dimensions, and leads to the state-of-the-art 
performance. To define the problem in mathematical terms in compression stage, let   
represent the current pixel, where x and y are the coordinates of the current pixel in the current 
band, W and H are the image’s width and height, and xWyt += . For the first band, the 
intraband estimate of pixel )(tsz

 ( )(~ tsz
) is given as follows: 
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where )(),(),(),( tsandtststs NE
z

N
z

NW
z

W
z  denote four neighboring pixels, respectively. For the 

other bands, the RLS filter is adopted to conduct the interband prediction by the following 
model: 

 )1()()()( −−= tttdte T
zzz wd                                                         (3) 

where the input vector [ ])(,),(),()( 21 tdtdtdt pzzzz −−−= d , the weight vector 
[ ])(),()( 1 twtwt p=w , p is the number of prediction bands (prediction bands are previous 

bands of the current band, which are used to predict the current band), w(0)=[0], and t=1. The 
gain vector k(t), the inverse correlation matrix P(t), and the weight vector w(t) are updated as 
follows: 
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)()()1()( tetktt z+−= ww                                                             (6) 

where 
PIP δ=)0( , 0001.0=δ , 

pI  is the p-order identity matrix. After the prediction 
residual is calculated, it is entropy-coded using an adaptive arithmetic coder (AAC). Then 
t=t+1, and the next pixel is executed the same interband prediction. When t is larger than W×H, 
the procedure of current band prediction is ended. 

2.2 Optimized RLS Based on Optimal Number of Prediction Bands 
In hyperspectral images, spectral correlations are usually stronger than spatial correlations. It 
is expected that compression methods based on spectral correlation can work well. Previous 
works indicate that by taking advantage of the spectral correlation, bit rate can be significantly 
improved [2-5], and on the basis, prediction bands are further explored to optimize the 
compression results [17-19]. 

 
Table 1. Portion of compression results (bits in per pixel) as a function of the number of prediction 

bands 
Number of bands 5 10 15 20 25 30 35 40 45 50 

YSC-0 3.82 3.77 3.74 3.74 3.74 3.70 3.70 3.70 3.72 3.75 
YSC-3 3.68 3.64 3.62 3.61 3.61 3.58 3.58 3.58 3.61 3.65 

YSC-10 3.31 3.26 3.22 3.23 3.23 3.18 3.18 3.18 3.19 3.23 
YSC-11 3.54 3.47 3.43 3.43 3.43 3.38 3.39 3.39 3.40 3.45 
YSC-18 3.72 3.67 3.65 3.65 3.65 3.62 3.62 3.62 3.64 3.67 

Average-YSC 3.61 3.56 3.53 3.53 3.53 3.49 3.49 3.49 3.51 3.55 
 YSU-0 6.05 5.99 5.95 5.95 5.95 5.91 5.91 5.91 5.93 5.96 

YSU-3 5.88 5.82 5.79 5.80 5.80 5.75 5.75 5.75 5.76 5.78 
YSU-10 5.51 5.48 5.45 5.44 5.44 5.41 5.40 5.40 5.43 5.47 
YSU-11 5.74 5.67 5.63 5.62 5.62 5.58 5.58 5.58 5.61 5.65 
YSU-18 5.94 5.90 5.86 5.85 5.85 5.82 5.82 5.82 5.83 5.86 

Average-YSU 5.82 5.77 5.73 5.73 5.73 5.69 5.69 5.69 5.71 5.74 
 MU-10 2.69 2.64 2.61 2.61 2.61 2.57 2.57 2.57 2.58 2.60 

HU-1 2.57 2.52 2.50 2.50 2.50 2.47 2.47 2.47 2.50 2.53 
Average-MU&HU 2.63 2.58 2.56 2.56 2.56 2.52 2.52 2.52 2.54 2.57 
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Fig. 1. Compression results using different number of prediction bands. 

 
 

Since the spatial location of the current pixel is known, this aspect can be included in the 
RLS model to retain the spectral information of the current pixel and spread them to 
neighboring pixels. Thus, the bit rate of the RLS model can be further improved by spreading 
the spectral information from the current pixel to its neighbors until achieving a global stable 
state on the whole image. In order to obtain the optimal number of prediction bands for RLS, 
we varied the number of prediction bands from 5 to 224 using a stride value of 5 in the first test. 
For test data, we used NASA’s AVIRIS’06 images (details of the dataset will be given in 
Section IV). The results from those tests are quantitatively shown in Table 1 and Fig. 1.  In 
this table, the number of prediction bands is shown in row 1. Rows 2-16 show results using 
twelve scene images. For this test purpose, we are only interested in finding the optimal value 
for the number of prediction bands p. As can be seen from Table 1 and Fig. 1, the average 
compression bits-per-pixel reaches its minimum at 30 prediction bands. Thus, we take 30 as 
the optimal number of prediction bands for compression calculation in this paper, and then can 
obtain the lowest bit rate, which means that the RLS model can achieve the optimal 
compression results by spreading the spectral information from the current band to its optimal 
prediction bands. To sum up, the optimized RLS model based on optimal prediction bands 
(referred to hereinafter as RLS-OPB), which exploits both spatial and spectral information in 
the compression stage, is described in Fig. 2. 
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Fig. 2. Serial algorithm of RLS-OPB (referred to hereinafter as RLS-OPB-S). 

3. Algorithm Optimization for RLS-OPB on GPUs 
The computing system consists of a host that is a traditional CPU and devotes more resources 
to caching or control flow operations, while GPUs can be regarded as computer devices or 
coprocessors. GPUs are single-instruction multiple-data (SIMD) parallel devices. Therefore, 
we can take data-parallel computing of computationally intensive portions of the algorithm or 
application on GPUs [10]. At the same time, we allocate part of the computations operating on 
small data to the CPU. Furthermore, because of the quite expensive cost of input/output (I/O) 
communication between the host (CPU) and the device (GPU), we minimize the data transfers 
between the host and the device in our implementation. Namely, the data is stored in the local 
GPU memory as much as possible, and the storage space for intermediate variables of the 
iterative process is allocated in advance. According to CUDA programming paradigms, when 
executing a function (or kernel) on the device (GPU), one has to allocate memory on it, 
transfer data from the host to the GPU, and finally transfer data back to the CPU, freeing the 
device memory. The kernel can be either manually defined or implemented by an optimized 
routine, like those offered by libraries such as CUBLAS [20] and CULA [21]. However, the 
latter usually achieves better performance than the former for matrix multiplication [22]. Thus, 
CULA is chosen to realize the main matrix operations in this paper. 
 

 

Serial Algorithm of RLS-OPB (referred to hereinafter as RLS-OPB-S) 
Input: HSI images HWZR ×× , number of bands Z, width of image W, and height of image H, pixel 
sample ( ) HWZ

z Rts ××∈ ; 
Initialization: Set z=2, t=1, 0001.0=δ , p=30, initialize Ip equals the p-order identity matrix, the 
prediction error E=R, w(0)=[0], P(0)=

pIδ ; 
Do: 

Do: 
Step 1. Calculate ( )tdz

 and ( )td iz −
, form the input vector 

( ) ( ) ( ) ( )[ ]tdtdtdt pzzzz −−−= ,,, 21 d , where i=1,…,p; 

Step 2.  )1()()()( −−= tttdte T
zzz wd ; 
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Step 4. )1()()()1()( −−−= tPttktPtP z
T d ; 

Step 5. )()()1()( tetktt z+−= ww ; 
Step 6. t=t+1; 

While HWt ×≤  
Step 7. z=z+1; 

While Zz ≤  
Step 8. the prediction error E is entropy-coded using AAC;  
Output: the compressed bit-stream of E. 
End 
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With the aforementioned issues in mind, to further optimize the RLS-OPB algorithm on 

GPUs, it is now necessary to deeply analyze the serial algorithm of RLS-OPB-S. The inputs to 
the algorithm are the hyperspectral images HWZR ×× , the inverse correlation matrix P(0), and the 
weight vector w(0). Because of referring to matrix multiplication, matrix subtraction, and 
matrix addition, every read-write and arithmetic type operation of the algorithm is very time 
consuming for the higher dimensional data (e.g., the images HWZR ×× , P(t), and w(t)). Meanwhile, 
some iteration steps such as the gain vector k(t), the inverse correlation matrix P(t), and the 
weight vector w(t) increases the computational burden even more. On the basis of the 
foregoing, the key stage of RLS-OPB-S is the loop iterative solution of vector k(t), matrix P(t) 
and vector w(t). Since there are dependencies among these iteration steps, it is hard to 
parallelize the algorithm as a whole. 

In order to improve the computing performance of RLS-OPB, a GPU-based parallel 
hyperspectral compression algorithm (RLS-OPB-P) has been developed according to the 
following optimization principles: 1) at the beginning, we reconstruct the iteration steps with 
tight coupling; 2) then we parallel the iteration steps with loose coupling; 3) finally, the 
parallelization at kernel level is realized by CUDA streams. The detailed flowchart of the 
parallel algorithm is given in Fig. 3. In the following, we describe the most relevant steps of 
the parallelization accomplished by the proposed RLS-OPB-P algorithm. 
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Fig. 3. GPU implementation of  RLS-OPB for hyperspectral compression 

 
 

For Step 1 in Fig. 2, the terms )(~ ts iz −  and )(td iz −  can be calculated firstly, then these 
elements will be used to form the input vector )(tzd , as this element remain unchanged in each 
loop. A kernel function called DEst_kernel is defined to carry out the operations 

4/))()()()(()(~ tststststs NE
iz

N
iz

NW
iz

W
iziz −−−−− +++= , and )(~)()( tststd iziziz −−− −= . The kernel function DVec_kernel 
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in Fig. 3 is implemented to form the input vector )(tzd . Since the size of each hyperspectral 
image is W×H, we start a J×L thread grid on the GPU, and each thread takes charge of the 
calculation for one pixel element, which makes the parallelization be maximized. 

Both the number of computing threads in every block (denoted as THREAD_SIZE in this 
paper) and the number of blocks in every grid (denoted as BLOCK_SIZE in this paper) are 
crucial issues, since they plays an important role on the processing performance. In general, 
the latency of accessing and the occupancy of GPU depend on the number of the active warps 
in each stream multiprocessor (SM). So the device occupancy should be improved as high as 
possible to make sure that there are more threads executing on every SM. However, the 
hardware capabilities (such as shared memories, registers, and so on) usually limit the number 
of threads concurrently executed on an SM. Meanwhile, higher occupancy does not mean 
better performance [23]. Therefore, we chose the THREAD_SIZE and the BLOCK_SIZE 
according to the computing capabilities of NVIDIA Kepler GTX690 (details of the GPU will 
be given in Section IV). Namely, they are set to 32×32 and ((J+32-1)/32)×((L+32-1)/32), 
respectively, in order to make the GPU perform the best. 

For Step 2 in Fig. 2, because the main operation )1()( −tt T
z wd  is related with matrix 

multiplication, function culaDeviceDgemm in CULA is first invoked to compute it on the 
GPU. Then the rest of the calculation for ez(t) is implemented by a kernel function e_kernel, 
which conducts the mapping between thread and pixel, and each thread is responsible for the 
calculation related to one pixel. To minimize the latency of global memory access, ez(t) is 
stored on GPU global memory, and the temporary variable )(~ td z  is stored on shared memory. 
As a consequence, the iterative steps of tight coupling are combined together and the 
parallelization of the function level inside the iteration is realized by these optimizations. 

For steps 3 and 4, we decompose the calculation of k(t) and P(t) into )()1(1 ttPv T
zd−=  

and ))(1/()( 11 vtvtk zd+= , )1()()(1 −= tPttkP zd  and 
1)1()( PtPtP −−= , respectively. The 

operations ))(1/()( 11 vtvtk zd+=  and 
1)1()( PtPtP −−=  are implemented by their 

corresponding kernel functions: k_kernel and p_kernel, in which the computational data are 
transferred to shared memory to process. We allocate k(t) and P(t) on GPU global memory, 
and organize their grid size according to the size of dz(t) and P(t). The rest of the computations 
are matrix-vector and matrix multiplications, which can be efficiently performed by the 
function culaDeviceDgemv and culaDeviceDgemm, respectively. 

For step 5, bearing in mind that k1(t) and w(t) are of the same size, we can allocate them on 
GPU global memory, and encapsulate them together in a kernel function w_kernel, where a 
grid is created according to the size of w(t), and each thread is responsible for the calculation 
related to one element. 

Finally, the results are copied from device (GPU) to the host (CPU) for analyzing the loop 
termination condition. Once the stopping condition is satisfied, we perform the memory copy 
of E from device to host, and the AAC is executed on the CPU. 

With the aforementioned observations in mind, a detailed step-by-step algorithm 
description of the parallel hyperspectral compression algorithm based on RLS-OPB on GPU is 
summarized in Fig. 4. 
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Fig. 4. Parallel algorithm of RLS-OPB (referred to hereinafter as RLS-OPB-P). 

4. Experimental Results 
The proposed compression algorithm is assessed using the hyperspectral images produced by 
an airborne visible/infrared imaging spectrometer (AVIRIS) [24], publicly available for 
download. All images include 224 bands, each of which is 16 bits per pixel (bpp), except for 
Hawaii and Maine, which is 12 bpp. Uncalibrated images are stored as unsigned integers, 
whereas calibrated images are stored as signed integers. The details of these images are given 
in Table 2. 

 
Table 2. Detalls of experimental hyperspectral images used in our experiments 

Name Acronym Size(W×H) Formation Scenes 
Yellow Stone Calibrated YSC 677×512 Signed 16 bit 0,3,10,11,18 

Yellow Stone 
Uncalibrated YSU 680×512 Unsigned 16 bit 0,3,10,11,18 

Maine Uncalibrated MU 680×512 Unsigned 12 bit 10 
Hawaii Uncalibrated HU 614×512 Unsigned 12 bit 1 

 

Parallel Hyperspectral Compression Algorithm Based on RLS-OPB on GPU (RLS-OPB-P) 
Input: HSI images HWZR ×× , number of bands Z, width of image W, and height of image H, pixel 
sample ( ) HWZ

z Rts ××∈ ; 
Initialization: Set z=2, t=1, 0001.0=δ , p=30, initialize Ip equals the p-order identity matrix, the 
prediction error E=R, w(0)=[0], P(0)=

pIδ ; 
Step 1. Copy data from host to device 
Do: 

Step 2. Calculate dz(t) on GPU 
Invoke DEst_kernel to compute 4/))()()()(()(~ tststststs NE

iz
N

iz
NW

iz
W

iziz −−−−− +++=  and )(~)()( tststd iziziz −−− −=  
Invoke DVec_kernel to form dz(t) 
Step 3. Calculate ez(t) on GPU 
Invoke culaDeviceDgemm to compute )1()()(~ −= tttd T

zz wd  
Invoke e_kernel to compute  )(~)()( tdtdte zzz −=  
Step 4. Calculate k(t) on GPU 
Invoke culaDeviceDgemv to compute )()1(1 ttPv T

zd−=  
Invoke k_kernel to compute ))(1/()( 11 vtvtk zd+=  
Step 5. Calculate P(t) on GPU 
Invoke culaDeviceDgemm to compute )1()()(1 −= tPttkP zd  
Invoke p_kernel to compute 

1)1()( PtPtP −−=  
Step 6. Invoke w_kernel to calculate )()(1 tetkw z=  and 

1)1()( wtwtw +−=  on GPU 
Step 7. t=t+1 

While HWt ×≤  
Step 8. Copy E from device to host 
Step 9. E is entropy-coded using AAC on CPU;  
Output: the compressed bit-stream of E. 
End 
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The experimental platform used in our tests is the NVIDIA Kepler GTX 690, which 

consists of 8 stream multiprocesors (SM), and each SM has 192 stream processors (SP). The 
GPU is connected to one Intel Core i7-4790K CPU at 4.0 GHz with 4 cores and 16-GB RAM. 
The version of OpenMP and CUDA are 2.0 and 6.0, respectively. In order to demonstrate the 
performance improvements between the parallel implementations on multicore CPU platform 
and our considered GPU platform, a multicore implementation of RLS-OPB (RLS-OPB-M) 
has been developed following the design principles in [10] and using OpenMP Application 
Program Interface (API), which is adopted to explicitly address multithreaded and 
shared-memory parallelism. The corresponding serial version (RLS-OPB-S) is executed on 
one core of the Intel Core i7-4790K CPU, and the multicore version (RLS-OPB-M) is run on 
the four available cores of the Intel Core i7-4790K CPU. Meanwhile, Motivated by the GPU 
hardware characteristics, the parallel version (RLS-OPB-P) refers to the parallel 
implementation adopting the single GTX 690 by default, if not otherwise specified. 

The first experiment was carried out to test the bit rate of the three implementations on the 
complete AVIRIS images. The compression results are quantitatively shown in Table 3, in 
which results for RLS are from [6]. The fact is that the proposed RLS-OPB-S, RLS-OPB-M, 
and RLS-OPB-P obtain exactly the same bit rate in terms of bits per pixel (BPP), and 
outperform the results obtained by RLS. At this point, it is important to emphasize that both 
the multicore and GPU parallel versions obtain exactly the same results as the serial 
implementation. This means that the three versions achieve exactly the same bit rate and the 
only difference among them is the computing performance. 

 
 

Table 3. Compression results (bpp) for the complete AVIRIS images 
 

Image RLS RLS-OPB-S RLS-OPB-
M RLS-OPB-P RLS-PB-S/ 

RLS 
 YSC-0 

YSC-3 
YSC-10 
YSC-11 
YSC-18 

3.79 
3.65 
3.29 
3.50 
3.69 

3.70 
3.58 
3.18 
3.38 
3.62 

3.70 
3.58 
3.18 
3.38 
3.62 

3.70 
3.58 
3.18 
3.38 
3.62 

0.98 
0.98 
0.97 
0.97 
0.98 

Average 3.58 3.49 3.49 3.49 0.98 
 YSU-0 

YSU-3 
YSU-10 
YSU-11 
YSU-18 

6.01 
5.85 
5.49 
5.70 
5.91 

5.91 
5.75 
5.41 
5.58 
5.82 

5.91 
5.75 
5.41 
5.58 
5.82 

5.91 
5.75 
5.41 
5.58 
5.82 

0.98 
0.98 
0.99 
0.98 
0.98 

Average 5.79 5.69 5.69 5.69 0.98 
 MU-10 

HU-1 
2.66 
2.53 

2.57 
2.47 

2.57 
2.47 

2.57 
2.47 

0.97 
0.98 

Average 2.60 2.52 2.52 2.52 0.98 
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Table 4. Execution times and acceleration factors obtained for the AVIRIS images 
 

Image RLS-OPB-S 
Time (s) 

RLS-OPB-M RLS-OPB-P 
Time 

(s) 
Acceleration 

factor (X) 
Time 

(s) 
Acceleration 

factor (X) 
YSC-0 131.23 54.00 2.43 2.85 46.11 
YSC-3 130.62 52.04 2.51 2.82 46.35 
YSC-10 130.54 54.62 2.39 2.83 46.06 
YSC-11 131.87 52.75 2.50 2.85 46.28 
YSC-18 130.86 52.98 2.47 2.83 46.19 
YSU-0 132.64 54.14 2.45 2.87 46.15 
YSU-3 133.20 54.15 2.46 2.88 46.17 
YSU-10 132.25 52.26 2.58 2.85 46.43 
YSU-11 131.89 53.39 2.47 2.85 46.20 
YSU-18 132.74 52.47 2.53 2.86 46.39 
MU-10 132.15 52.44 2.52 2.85 46.37 
HU-1 123.24 47.58 2.59 2.65 46.48 

 
Table 5. Transfer times (s) of RLS-OPB-P 

 

Image CPUTo 
GPU 

GPUTo 
CPU 

Total I/O Total 
Execution 

I/O 
Percentage 

YSC-0 0.42 0.33 0.75 2.85 26.23% 
YSC-3 0.43 0.35 0.78 2.82 27.66% 

YSC-10 0.42 0.32 0.74 2.83 26.15% 
YSC-11 0.42 0.34 0.76 2.85 26.67% 
YSC-18 0.43 0.31 0.74 2.83 25.14% 
YSU-0 0.44 0.35 0.79 2.87 27.53% 
YSU-3 0.44 0.36 0.80 2.88 27.78% 

YSU-10 0.45 0.32 0.77 2.85 27.02% 
YSU-11 0.44 0.33 0.77 2.85 27.02% 
YSU-18 0.46 0.35 0.81 2.86 30.42% 
MU-10 0.45 0.35 0.80 2.85 30.14% 
HU-1 0.41 0.32 0.73 2.65 27.55% 

 
 

Table 4 reports the obtained results in terms of computation times and speedups measured 
after comparing the parallel implementations of RLS-OPB (RLS-OPB-M and RLS-OPB-P) 
with the equivalent serial version for the considered images. The results show that the parallel 
implementation RLS-OPB-P achieves a remarkable acceleration factor of more than 46 
relative to the serial version RLS-OPB-S. This is because the parallel version benefits from the 
efficient exploration of GPU parallel capacities and the utilization of the highly efficient 
GPU-accelerated linear algebra libraries of CUDA. Furthermore, the proposed parallel 
implementation of RLS-OPB-P can be completed in less than 3 s, including the loading times 
and the data transfer times from CPU and GPU and vice versa, as shown in Table 5. This 
represents a significant improvement with regard to both serial and multicore versions. 
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Fig. 5. The speedup profile of RLS-OPB using single-GPU and multi-GPU on 12 AVIRIS images 

 
We now continue to pay attention to the computing performance. RLS-OPB-P, it is true, 

gets significant acceleration factors on AVIRIS images. Nevertheless other optimized 
strategies such as multi-GPU implementation and thread allocation can further boost the 
execution efficiency of CUDA kernels. 
 

 
Fig. 6. Speedup comparison between thread size 

 
GTX 690 has two GPUs. Once both GPUs are used, the execution time is further decreased. 

In order to compare performance between single-GPU and multi-GPU, the GPU-based 
parallel versions of RLS-OPB were run on the considered images, in which the proposed 
multi-GPU version refers to single-node desktop systems with multiple compute devices. We 
obtained different speedups for the AVIRIS images above on the different GPUs, as shown in 
Fig. 5. The results indicate that using one single GPU we have an average speedup of 46×. 
When there are more than one GPU available, the average compression time of the GPU-based 
RLS-OPB takes about 1.5 s or a speedup of 89× relative to RLS-OPB-S. The fact that using 2 
GPUs does not have a total speedup near 2 can be attributed to the reason that each GPU is not 
assigned a job of equal workload. In spite of this, a general trend can be seen that using more 
GPUs does give higher speedup for RLS-OPB. 

THREAD_SIZE can play an important role on the computing performance. Thread 
allocation determines not only the block size but also the grid size because these resources are  
dynamically partitioned and assigned to support their execution. Meanwhile, the latency of 
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accessing and the occupancy of GPU depend on the number of the active warps in each SM. In 
order to verify the THREAD_SIZE allocation of our GPU parallel implementation. We tested 
the speedup for different thread sizes in processing one YSC-0 image (still using 2 GPUs). The 
result is comparatively reported in Fig. 6. As can be seen from Fig. 6, the THREAD_SIZE of 
32×32 produces the best performance. 

In order to compare performance across GPUs, we tested the speedup for images of 
different sizes on multiple NVIDIA GPUs. Specifically, the parallel version RLS-OPB-P was 
run on the Fermi-based GTX 690, which has 1536 cores; the Fermi-based GTX 570, which has 
480 cores; and the Fermi-based GTX 280, which has 240 cores. The result is shown in Fig. 7
－the Fermi-based GTX 690 produces the best performance. 
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Fig. 7. Speedup for images of different sizes on the different GPUs 

 
To conclude this section, we emphasize that (as shown in Table 4 and Fig. 5) the average 

speedups of the single-GPU and multi-GPU GPU versions are more than 46× and 89× with 
regard to the serial version RLS-OPB-S, respectively. While the multicore version 
RLS-OPB-M obtains an average speedup of 2.3×. For the AVIRIS scene, the compression task 
can be completed in about 1.5 s. These are important advantages offered by GPU platforms in 
terms of being able to adapt computationally expensive compression problems such as those 
involved in RLS methods to time-critical scenarios. 

5. Conclusion 
In this paper, a novel parallel recursive least square compression method on GPUs has been 
proposed. First, an optimized recursive least square model is introduced based on optimal 
number of prediction bands, which improves the bit rate by spreading the spectral information 
from the current pixel to its neighbors until achieving a global stable state on the whole image. 
Further, a parallel implementation of the RLS approach for GPUs is developed using the 
NVIDIA CUDA. Experimental results on AVIRIS images show the effectiveness of the 
proposed GPU implementation, not only in terms of bit rate but also in terms of computing 
performance.  Specially, when more than one GPU is available, the implementation achieves 
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significant speedups compared to the serial and multicore versions, and provides an effective 
and efficient compression solution for AVIRIS images compression in real time. The future 
work will consider the I/O communications between the host and the device for further 
speedup. 
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