
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, Jul. 2017 3543
Copyright ⓒ2017 KSII

Parallel Implementation of the Recursive
Least Square for Hyperspectral Image

Compression on GPUs

Changguo Li
 College of Fundamental Education, Sichuan Normal University

Chengdu, 610068, China
 [e-mail: 389224879@qq.com]

*Corresponding author: Changguo Li

Received November 3, 2016; revised March 15, 2017; accepted March 25, 2017;
published July 31, 2017

Abstract

Compression is a very important technique for remotely sensed hyperspectral images. The
lossless compression based on the recursive least square (RLS), which eliminates
hyperspectral images’ redundancy using both spatial and spectral correlations, is an extremely
powerful tool for this purpose, but the relatively high computational complexity limits its
application to time-critical scenarios. In order to improve the computational efficiency of the
algorithm, we optimize its serial version and develop a new parallel implementation on
graphics processing units (GPUs). Namely, an optimized recursive least square based on
optimal number of prediction bands is introduced firstly. Then we use this approach as a case
study to illustrate the advantages and potential challenges of applying GPU parallel
optimization principles to the considered problem. The proposed parallel method properly
exploits the low-level architecture of GPUs and has been carried out using the compute unified
device architecture (CUDA). The GPU parallel implementation is compared with the serial
implementation on CPU. Experimental results indicate remarkable acceleration factors and
real-time performance, while retaining exactly the same bit rate with regard to the serial
version of the compressor.

Keywords: Graphics Processing Units (GPUs), compute Unified Device Architecture
(CUDA), recursive least square (RLS), parallel implementation, hyperspectral compression

This work was supported by the National Natural Science Foundation of China (Grant No. 61373162), the Research
Foundation of the Sichuan Department of Education (Grant No. 15ZB0044), and the Research Foundation of
Sichuan Normal University (Grant No. 2015KYQD312).

https://doi.org/10.3837/tiis.2017.07.013 ISSN : 1976-7277

mailto:t.m.chen@swansea.ac.uk

3544 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

1. Introduction

Hyperspectral image compression is an active research topic in remote sensing [1]. It is
generally known that hyperspectral instruments acquire images in hundreds of narrow and
continuous spectral bands. Moreover, the data volume of hyperspectral images has been
drastically increased with the growing scientific and technological demands in spatial and
spectral resolutions, which poses a significant challenge to data transmission and storage.
Therefore, there is an increasing need for highly performing image compression techniques.
Typically, hyperspectral image compression techniques are classified into three modalities:
lossless, lossy, and near-lossless. However, the last two techniques are unacceptable in many
of the corresponding applications such as target detection, classification, object identification,
and automatic feature extraction. As a result, only lossless compression allows for
reconstructing the original image perfectly.

Among these three compression methods, lossless compression has received a lot of
interest [2-5]. Taking into consideration that the Adaptive filter can automatically adjust its
parameters and achieve the optimal filtering when the input signal and noise statistical
characteristics are unknown or change, as a technique for the efficient compression of the
original hyperspectral image with less statistical properties, the adaptive filter has been widely
used [4-6]. In [6], a novel algorithm for lossless compression of hyperspectral imagery based
on the recursive least square (RLS) was proposed. This compressor calculates the local
difference between the local mean of four neighbor of the current pixel and the current pixel,
and the local differences of the pixels which co-locate with the current pixel in previous bands
form the input vector of the RLS. The bit rate of this algorithm is comparable or superior to
that exhibited by many other state-of-the-art techniques. However, its computational
complexity was shown to be relatively high, thus limiting its application in time-critical
scenarios. The reason is not only the extremely high dimensionality of hyperspectral data, but
also that the RLS filter refers to multiple loop iterations of variables for each pixel. This results
in a computational complexity that is even higher than fast lossless (FL)-based compression
[4].

Recent advances in high-performance computing have opened new avenues to overcome
the aforementioned computational challenges [7-10]. These high-performance computing
technologies such as Beowulf clusters and distributed computers, multicore central processing
units (CPUs), field programmable gate arrays (FPGAs), and graphics processing units (GPUs),
can be used to accelerate hyperspectral image processing algorithms so as to make them
suitable for time-critical scenarios. In the above mentioned technologies, GPUs have recently
emerged as a commodity platform for many compute-intensive, massively parallel, and
data-intensive computations. GPU-based parallel computing offers a tremendous potential to
bridge the gap toward real-time compression of hyperspectral images. In [11], a spectral image
data compression method called Linear Prediction with Constant Coefficients (LP-CC) using
NVIDIA's CUDA parallel computing architecture was implemented, which achieves a
speedup of 86 compared to a single threaded CPU version. In [12], two most time consuming
stages of linear prediction and vector quantization were chosen for GPU-based
implementation. By exploiting the data parallel characteristics of these two stages, a spatial
division design showed a speedup of 72x. In [13], the GPU implementation of an algorithm for
onboard lossy hyperspectral image compression was described, and an architecture that allows
to accelerate the compression task by parallelizing it on the GPU was proposed. In [14], a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3545

partitioning error-resilient entropy coding (P-EREC) algorithm, which splits variable-length
blocks into groups and then every group is coded using the EREC separately, was proposed.
Each GPU thread processed one group so as to make the EREC coarse-grained parallel. 32x to
123x speedup over the original C code of EREC was achieved. In [15] and [16], the CUDA
toolkit based on GPU was used to design the paprallel algorithms of the all phase biorthogonal
transform with JPEG scheme (APBT-JPEG) and the all phase discrete sine biorthogonal
transform with JPEG scheme (APDSBT-JPEG), and their maximum speedup ratios all
reached more than 100 times. However, to the best of our knowledge, and despite the
importance of RLS filter methods in the hyperspectral compression, there are no available
GPU implementations for this category of algorithms in the literature.

In this paper, we develop a new parallel RLS method for hyperspectral image compression
on GPUs. First, we introduce an optimized RLS model based on optimal number of prediction
bands. The method promotes the bit rate by spreading the spectral information from the
current pixel to its neighbors until achieving a global stable state on the whole image. Then
this optimized RLS method is used as a case study to illustrate the advantages and potential
challenges of utilizing GPU parallel computing principles to improve the computation speed
of the proposed approach. The proposed implementation accelerates intensive computations
and operations involving large data sets on the GPU by utilizing NVidia’s compute unified
device architecture (CUDA), executing the rest of the operations (mostly related with control)
on the CPU. The performance of the proposed GPU-based parallel implementation is assessed
using real hyperspectral images and compared with the CPU-based serial implementation. The
remainder of this paper is organized as follows. Section II briefly describes the hyperspectral
images compression using RLS filter. Section III presents its parallel implementation.
Experimental results are reported in Section IV. Conclusions with some remarks and hints at
plausible future research lines are given in Section V.

2. Optimized Recursive Least Square Method Based on Optimal Number
of Prediction Bands

2.1 Recursive Least Square (RLS)
As an adaptive filtering algorithm, the basic idea of RLS is that given the least square
estimation of the filter weight vector at time n-1, the iterative method is used to calculate the
least squares estimation of the filter weight vector at time n. For the above reason, the
applications of RLS have drawn wide attention in recent years. In [6], it has been proved to be
an extremely powerful compression tool for hyperspectral image, which has strong
correlations on both spectral and spatial dimensions, and leads to the state-of-the-art
performance. To define the problem in mathematical terms in compression stage, let
represent the current pixel, where x and y are the coordinates of the current pixel in the current
band, W and H are the image’s width and height, and xWyt += . For the first band, the
intraband estimate of pixel)(tsz

 ()(~ tsz
) is given as follows:

4/))()()()(()(~ tststststs NE
z

N
z

NW
z

W
zz +++= (1)

)(~)()(tststd zzz −= (2)

3546 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

where)(),(),(),(tsandtststs NE
z

N
z

NW
z

W
z denote four neighboring pixels, respectively. For the

other bands, the RLS filter is adopted to conduct the interband prediction by the following
model:

 )1()()()(−−= tttdte T
zzz wd (3)

where the input vector [])(,),(),()(21 tdtdtdt pzzzz −−−= d , the weight vector
[])(),()(1 twtwt p=w , p is the number of prediction bands (prediction bands are previous

bands of the current band, which are used to predict the current band), w(0)=[0], and t=1. The
gain vector k(t), the inverse correlation matrix P(t), and the weight vector w(t) are updated as
follows:

)()1()(1

)()1(
)(

ttPt

ttP
tk

T
zz

T
zT

dd

d

−+
−

= (4)

)1()()()1()(−−−= tPttktPtP z
T d (5)

)()()1()(tetktt z+−= ww (6)

where
PIP δ=)0(, 0001.0=δ ,

pI is the p-order identity matrix. After the prediction
residual is calculated, it is entropy-coded using an adaptive arithmetic coder (AAC). Then
t=t+1, and the next pixel is executed the same interband prediction. When t is larger than W×H,
the procedure of current band prediction is ended.

2.2 Optimized RLS Based on Optimal Number of Prediction Bands
In hyperspectral images, spectral correlations are usually stronger than spatial correlations. It
is expected that compression methods based on spectral correlation can work well. Previous
works indicate that by taking advantage of the spectral correlation, bit rate can be significantly
improved [2-5], and on the basis, prediction bands are further explored to optimize the
compression results [17-19].

Table 1. Portion of compression results (bits in per pixel) as a function of the number of prediction

bands
Number of bands 5 10 15 20 25 30 35 40 45 50

YSC-0 3.82 3.77 3.74 3.74 3.74 3.70 3.70 3.70 3.72 3.75
YSC-3 3.68 3.64 3.62 3.61 3.61 3.58 3.58 3.58 3.61 3.65

YSC-10 3.31 3.26 3.22 3.23 3.23 3.18 3.18 3.18 3.19 3.23
YSC-11 3.54 3.47 3.43 3.43 3.43 3.38 3.39 3.39 3.40 3.45
YSC-18 3.72 3.67 3.65 3.65 3.65 3.62 3.62 3.62 3.64 3.67

Average-YSC 3.61 3.56 3.53 3.53 3.53 3.49 3.49 3.49 3.51 3.55
 YSU-0 6.05 5.99 5.95 5.95 5.95 5.91 5.91 5.91 5.93 5.96

YSU-3 5.88 5.82 5.79 5.80 5.80 5.75 5.75 5.75 5.76 5.78
YSU-10 5.51 5.48 5.45 5.44 5.44 5.41 5.40 5.40 5.43 5.47
YSU-11 5.74 5.67 5.63 5.62 5.62 5.58 5.58 5.58 5.61 5.65
YSU-18 5.94 5.90 5.86 5.85 5.85 5.82 5.82 5.82 5.83 5.86

Average-YSU 5.82 5.77 5.73 5.73 5.73 5.69 5.69 5.69 5.71 5.74
 MU-10 2.69 2.64 2.61 2.61 2.61 2.57 2.57 2.57 2.58 2.60

HU-1 2.57 2.52 2.50 2.50 2.50 2.47 2.47 2.47 2.50 2.53
Average-MU&HU 2.63 2.58 2.56 2.56 2.56 2.52 2.52 2.52 2.54 2.57

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3547

0 10 20 30 40 50 60 70 80 90 100110120 130140150160170180190 200210220
0

1

2

3

4

5

6

The number of prediction bands

E
nt

ro
py

 (b
its

/p
ix

el
)

Average-YSC
Average-YSU
Average-MU&HU

Fig. 1. Compression results using different number of prediction bands.

Since the spatial location of the current pixel is known, this aspect can be included in the
RLS model to retain the spectral information of the current pixel and spread them to
neighboring pixels. Thus, the bit rate of the RLS model can be further improved by spreading
the spectral information from the current pixel to its neighbors until achieving a global stable
state on the whole image. In order to obtain the optimal number of prediction bands for RLS,
we varied the number of prediction bands from 5 to 224 using a stride value of 5 in the first test.
For test data, we used NASA’s AVIRIS’06 images (details of the dataset will be given in
Section IV). The results from those tests are quantitatively shown in Table 1 and Fig. 1. In
this table, the number of prediction bands is shown in row 1. Rows 2-16 show results using
twelve scene images. For this test purpose, we are only interested in finding the optimal value
for the number of prediction bands p. As can be seen from Table 1 and Fig. 1, the average
compression bits-per-pixel reaches its minimum at 30 prediction bands. Thus, we take 30 as
the optimal number of prediction bands for compression calculation in this paper, and then can
obtain the lowest bit rate, which means that the RLS model can achieve the optimal
compression results by spreading the spectral information from the current band to its optimal
prediction bands. To sum up, the optimized RLS model based on optimal prediction bands
(referred to hereinafter as RLS-OPB), which exploits both spatial and spectral information in
the compression stage, is described in Fig. 2.

3548 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

Fig. 2. Serial algorithm of RLS-OPB (referred to hereinafter as RLS-OPB-S).

3. Algorithm Optimization for RLS-OPB on GPUs
The computing system consists of a host that is a traditional CPU and devotes more resources
to caching or control flow operations, while GPUs can be regarded as computer devices or
coprocessors. GPUs are single-instruction multiple-data (SIMD) parallel devices. Therefore,
we can take data-parallel computing of computationally intensive portions of the algorithm or
application on GPUs [10]. At the same time, we allocate part of the computations operating on
small data to the CPU. Furthermore, because of the quite expensive cost of input/output (I/O)
communication between the host (CPU) and the device (GPU), we minimize the data transfers
between the host and the device in our implementation. Namely, the data is stored in the local
GPU memory as much as possible, and the storage space for intermediate variables of the
iterative process is allocated in advance. According to CUDA programming paradigms, when
executing a function (or kernel) on the device (GPU), one has to allocate memory on it,
transfer data from the host to the GPU, and finally transfer data back to the CPU, freeing the
device memory. The kernel can be either manually defined or implemented by an optimized
routine, like those offered by libraries such as CUBLAS [20] and CULA [21]. However, the
latter usually achieves better performance than the former for matrix multiplication [22]. Thus,
CULA is chosen to realize the main matrix operations in this paper.

Serial Algorithm of RLS-OPB (referred to hereinafter as RLS-OPB-S)
Input: HSI images HWZR ×× , number of bands Z, width of image W, and height of image H, pixel
sample () HWZ

z Rts ××∈ ;
Initialization: Set z=2, t=1, 0001.0=δ , p=30, initialize Ip equals the p-order identity matrix, the
prediction error E=R, w(0)=[0], P(0)=

pIδ ;
Do:

Do:
Step 1. Calculate ()tdz

 and ()td iz −
, form the input vector

() () () ()[]tdtdtdt pzzzz −−−= ,,, 21 d , where i=1,…,p;

Step 2.  )1()()()(−−= tttdte T
zzz wd ;

Step 3.
)()1()(1

)()1(
)(

ttPt

ttP
tk

T
zz

T
zT

dd

d

−+
−

= ;

Step 4.)1()()()1()(−−−= tPttktPtP z
T d ;

Step 5.)()()1()(tetktt z+−= ww ;
Step 6. t=t+1;

While HWt ×≤
Step 7. z=z+1;

While Zz ≤
Step 8. the prediction error E is entropy-coded using AAC;
Output: the compressed bit-stream of E.
End

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3549

With the aforementioned issues in mind, to further optimize the RLS-OPB algorithm on

GPUs, it is now necessary to deeply analyze the serial algorithm of RLS-OPB-S. The inputs to
the algorithm are the hyperspectral images HWZR ×× , the inverse correlation matrix P(0), and the
weight vector w(0). Because of referring to matrix multiplication, matrix subtraction, and
matrix addition, every read-write and arithmetic type operation of the algorithm is very time
consuming for the higher dimensional data (e.g., the images HWZR ×× , P(t), and w(t)). Meanwhile,
some iteration steps such as the gain vector k(t), the inverse correlation matrix P(t), and the
weight vector w(t) increases the computational burden even more. On the basis of the
foregoing, the key stage of RLS-OPB-S is the loop iterative solution of vector k(t), matrix P(t)
and vector w(t). Since there are dependencies among these iteration steps, it is hard to
parallelize the algorithm as a whole.

In order to improve the computing performance of RLS-OPB, a GPU-based parallel
hyperspectral compression algorithm (RLS-OPB-P) has been developed according to the
following optimization principles: 1) at the beginning, we reconstruct the iteration steps with
tight coupling; 2) then we parallel the iteration steps with loose coupling; 3) finally, the
parallelization at kernel level is realized by CUDA streams. The detailed flowchart of the
parallel algorithm is given in Fig. 3. In the following, we describe the most relevant steps of
the parallelization accomplished by the proposed RLS-OPB-P algorithm.

Input pixel sample and HIS images

Parameters initialization

Copy data from host to device

DEst_kernel

culaDeviceDgemm
e_kernel

culaDeviceDgemv
k_kernel

culaDeviceDgemm
p_kernel

CPU

GPU

 forming vector DVec_kernel

)()1(1 ttPv T
zd−=

)1()()(1 −= tPttkP zd

w_kernel

)1()()(~ −= tttd T
zz wd

Copy E from device to host

Use AAC to code the prediction
error E

Output: the compressed bit-
stream of E

T

4

)()()()(
)(~

tstststs
ts

NE
iz

N
iz

NW
iz

W
iz

iz
−−−−

−
+++

=

)(~)()(tststd iziziz −−− −=

],0[pi ∈
)(tzd

 )(~)()(tdtdte zzz −=

1

1

)(1
)(

vt

v
tk

zd+
=

1)1()(PtPtP −−=

)()(1 tetkw z=

HWt ×≤

F

1)1()(wtt +−= ww
1, += tt

Fig. 3. GPU implementation of RLS-OPB for hyperspectral compression

For Step 1 in Fig. 2, the terms)(~ ts iz − and)(td iz − can be calculated firstly, then these
elements will be used to form the input vector)(tzd , as this element remain unchanged in each
loop. A kernel function called DEst_kernel is defined to carry out the operations

4/))()()()(()(~ tststststs NE
iz

N
iz

NW
iz

W
iziz −−−−− +++= , and)(~)()(tststd iziziz −−− −= . The kernel function DVec_kernel

3550 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

in Fig. 3 is implemented to form the input vector)(tzd . Since the size of each hyperspectral
image is W×H, we start a J×L thread grid on the GPU, and each thread takes charge of the
calculation for one pixel element, which makes the parallelization be maximized.

Both the number of computing threads in every block (denoted as THREAD_SIZE in this
paper) and the number of blocks in every grid (denoted as BLOCK_SIZE in this paper) are
crucial issues, since they plays an important role on the processing performance. In general,
the latency of accessing and the occupancy of GPU depend on the number of the active warps
in each stream multiprocessor (SM). So the device occupancy should be improved as high as
possible to make sure that there are more threads executing on every SM. However, the
hardware capabilities (such as shared memories, registers, and so on) usually limit the number
of threads concurrently executed on an SM. Meanwhile, higher occupancy does not mean
better performance [23]. Therefore, we chose the THREAD_SIZE and the BLOCK_SIZE
according to the computing capabilities of NVIDIA Kepler GTX690 (details of the GPU will
be given in Section IV). Namely, they are set to 32×32 and ((J+32-1)/32)×((L+32-1)/32),
respectively, in order to make the GPU perform the best.

For Step 2 in Fig. 2, because the main operation)1()(−tt T
z wd is related with matrix

multiplication, function culaDeviceDgemm in CULA is first invoked to compute it on the
GPU. Then the rest of the calculation for ez(t) is implemented by a kernel function e_kernel,
which conducts the mapping between thread and pixel, and each thread is responsible for the
calculation related to one pixel. To minimize the latency of global memory access, ez(t) is
stored on GPU global memory, and the temporary variable)(~ td z is stored on shared memory.
As a consequence, the iterative steps of tight coupling are combined together and the
parallelization of the function level inside the iteration is realized by these optimizations.

For steps 3 and 4, we decompose the calculation of k(t) and P(t) into)()1(1 ttPv T
zd−=

and))(1/()(11 vtvtk zd+= ,)1()()(1 −= tPttkP zd and
1)1()(PtPtP −−= , respectively. The

operations))(1/()(11 vtvtk zd+= and
1)1()(PtPtP −−= are implemented by their

corresponding kernel functions: k_kernel and p_kernel, in which the computational data are
transferred to shared memory to process. We allocate k(t) and P(t) on GPU global memory,
and organize their grid size according to the size of dz(t) and P(t). The rest of the computations
are matrix-vector and matrix multiplications, which can be efficiently performed by the
function culaDeviceDgemv and culaDeviceDgemm, respectively.

For step 5, bearing in mind that k1(t) and w(t) are of the same size, we can allocate them on
GPU global memory, and encapsulate them together in a kernel function w_kernel, where a
grid is created according to the size of w(t), and each thread is responsible for the calculation
related to one element.

Finally, the results are copied from device (GPU) to the host (CPU) for analyzing the loop
termination condition. Once the stopping condition is satisfied, we perform the memory copy
of E from device to host, and the AAC is executed on the CPU.

With the aforementioned observations in mind, a detailed step-by-step algorithm
description of the parallel hyperspectral compression algorithm based on RLS-OPB on GPU is
summarized in Fig. 4.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3551

Fig. 4. Parallel algorithm of RLS-OPB (referred to hereinafter as RLS-OPB-P).

4. Experimental Results
The proposed compression algorithm is assessed using the hyperspectral images produced by
an airborne visible/infrared imaging spectrometer (AVIRIS) [24], publicly available for
download. All images include 224 bands, each of which is 16 bits per pixel (bpp), except for
Hawaii and Maine, which is 12 bpp. Uncalibrated images are stored as unsigned integers,
whereas calibrated images are stored as signed integers. The details of these images are given
in Table 2.

Table 2. Detalls of experimental hyperspectral images used in our experiments

Name Acronym Size(W×H) Formation Scenes
Yellow Stone Calibrated YSC 677×512 Signed 16 bit 0,3,10,11,18

Yellow Stone
Uncalibrated YSU 680×512 Unsigned 16 bit 0,3,10,11,18

Maine Uncalibrated MU 680×512 Unsigned 12 bit 10
Hawaii Uncalibrated HU 614×512 Unsigned 12 bit 1

Parallel Hyperspectral Compression Algorithm Based on RLS-OPB on GPU (RLS-OPB-P)
Input: HSI images HWZR ×× , number of bands Z, width of image W, and height of image H, pixel
sample () HWZ

z Rts ××∈ ;
Initialization: Set z=2, t=1, 0001.0=δ , p=30, initialize Ip equals the p-order identity matrix, the
prediction error E=R, w(0)=[0], P(0)=

pIδ ;
Step 1. Copy data from host to device
Do:

Step 2. Calculate dz(t) on GPU
Invoke DEst_kernel to compute 4/))()()()(()(~ tststststs NE

iz
N

iz
NW

iz
W

iziz −−−−− +++= and)(~)()(tststd iziziz −−− −=
Invoke DVec_kernel to form dz(t)
Step 3. Calculate ez(t) on GPU
Invoke culaDeviceDgemm to compute)1()()(~ −= tttd T

zz wd
Invoke e_kernel to compute  )(~)()(tdtdte zzz −=
Step 4. Calculate k(t) on GPU
Invoke culaDeviceDgemv to compute)()1(1 ttPv T

zd−=
Invoke k_kernel to compute))(1/()(11 vtvtk zd+=
Step 5. Calculate P(t) on GPU
Invoke culaDeviceDgemm to compute)1()()(1 −= tPttkP zd
Invoke p_kernel to compute

1)1()(PtPtP −−=
Step 6. Invoke w_kernel to calculate)()(1 tetkw z= and

1)1()(wtwtw +−= on GPU
Step 7. t=t+1

While HWt ×≤
Step 8. Copy E from device to host
Step 9. E is entropy-coded using AAC on CPU;
Output: the compressed bit-stream of E.
End

3552 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

The experimental platform used in our tests is the NVIDIA Kepler GTX 690, which

consists of 8 stream multiprocesors (SM), and each SM has 192 stream processors (SP). The
GPU is connected to one Intel Core i7-4790K CPU at 4.0 GHz with 4 cores and 16-GB RAM.
The version of OpenMP and CUDA are 2.0 and 6.0, respectively. In order to demonstrate the
performance improvements between the parallel implementations on multicore CPU platform
and our considered GPU platform, a multicore implementation of RLS-OPB (RLS-OPB-M)
has been developed following the design principles in [10] and using OpenMP Application
Program Interface (API), which is adopted to explicitly address multithreaded and
shared-memory parallelism. The corresponding serial version (RLS-OPB-S) is executed on
one core of the Intel Core i7-4790K CPU, and the multicore version (RLS-OPB-M) is run on
the four available cores of the Intel Core i7-4790K CPU. Meanwhile, Motivated by the GPU
hardware characteristics, the parallel version (RLS-OPB-P) refers to the parallel
implementation adopting the single GTX 690 by default, if not otherwise specified.

The first experiment was carried out to test the bit rate of the three implementations on the
complete AVIRIS images. The compression results are quantitatively shown in Table 3, in
which results for RLS are from [6]. The fact is that the proposed RLS-OPB-S, RLS-OPB-M,
and RLS-OPB-P obtain exactly the same bit rate in terms of bits per pixel (BPP), and
outperform the results obtained by RLS. At this point, it is important to emphasize that both
the multicore and GPU parallel versions obtain exactly the same results as the serial
implementation. This means that the three versions achieve exactly the same bit rate and the
only difference among them is the computing performance.

Table 3. Compression results (bpp) for the complete AVIRIS images

Image RLS RLS-OPB-S RLS-OPB-
M RLS-OPB-P RLS-PB-S/

RLS
 YSC-0

YSC-3
YSC-10
YSC-11
YSC-18

3.79
3.65
3.29
3.50
3.69

3.70
3.58
3.18
3.38
3.62

3.70
3.58
3.18
3.38
3.62

3.70
3.58
3.18
3.38
3.62

0.98
0.98
0.97
0.97
0.98

Average 3.58 3.49 3.49 3.49 0.98
 YSU-0

YSU-3
YSU-10
YSU-11
YSU-18

6.01
5.85
5.49
5.70
5.91

5.91
5.75
5.41
5.58
5.82

5.91
5.75
5.41
5.58
5.82

5.91
5.75
5.41
5.58
5.82

0.98
0.98
0.99
0.98
0.98

Average 5.79 5.69 5.69 5.69 0.98
 MU-10

HU-1
2.66
2.53

2.57
2.47

2.57
2.47

2.57
2.47

0.97
0.98

Average 2.60 2.52 2.52 2.52 0.98

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3553

Table 4. Execution times and acceleration factors obtained for the AVIRIS images

Image RLS-OPB-S
Time (s)

RLS-OPB-M RLS-OPB-P
Time

(s)
Acceleration

factor (X)
Time

(s)
Acceleration

factor (X)
YSC-0 131.23 54.00 2.43 2.85 46.11
YSC-3 130.62 52.04 2.51 2.82 46.35
YSC-10 130.54 54.62 2.39 2.83 46.06
YSC-11 131.87 52.75 2.50 2.85 46.28
YSC-18 130.86 52.98 2.47 2.83 46.19
YSU-0 132.64 54.14 2.45 2.87 46.15
YSU-3 133.20 54.15 2.46 2.88 46.17
YSU-10 132.25 52.26 2.58 2.85 46.43
YSU-11 131.89 53.39 2.47 2.85 46.20
YSU-18 132.74 52.47 2.53 2.86 46.39
MU-10 132.15 52.44 2.52 2.85 46.37
HU-1 123.24 47.58 2.59 2.65 46.48

Table 5. Transfer times (s) of RLS-OPB-P

Image CPUTo
GPU

GPUTo
CPU

Total I/O Total
Execution

I/O
Percentage

YSC-0 0.42 0.33 0.75 2.85 26.23%
YSC-3 0.43 0.35 0.78 2.82 27.66%

YSC-10 0.42 0.32 0.74 2.83 26.15%
YSC-11 0.42 0.34 0.76 2.85 26.67%
YSC-18 0.43 0.31 0.74 2.83 25.14%
YSU-0 0.44 0.35 0.79 2.87 27.53%
YSU-3 0.44 0.36 0.80 2.88 27.78%

YSU-10 0.45 0.32 0.77 2.85 27.02%
YSU-11 0.44 0.33 0.77 2.85 27.02%
YSU-18 0.46 0.35 0.81 2.86 30.42%
MU-10 0.45 0.35 0.80 2.85 30.14%
HU-1 0.41 0.32 0.73 2.65 27.55%

Table 4 reports the obtained results in terms of computation times and speedups measured
after comparing the parallel implementations of RLS-OPB (RLS-OPB-M and RLS-OPB-P)
with the equivalent serial version for the considered images. The results show that the parallel
implementation RLS-OPB-P achieves a remarkable acceleration factor of more than 46
relative to the serial version RLS-OPB-S. This is because the parallel version benefits from the
efficient exploration of GPU parallel capacities and the utilization of the highly efficient
GPU-accelerated linear algebra libraries of CUDA. Furthermore, the proposed parallel
implementation of RLS-OPB-P can be completed in less than 3 s, including the loading times
and the data transfer times from CPU and GPU and vice versa, as shown in Table 5. This
represents a significant improvement with regard to both serial and multicore versions.

3554 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

Fig. 5. The speedup profile of RLS-OPB using single-GPU and multi-GPU on 12 AVIRIS images

We now continue to pay attention to the computing performance. RLS-OPB-P, it is true,

gets significant acceleration factors on AVIRIS images. Nevertheless other optimized
strategies such as multi-GPU implementation and thread allocation can further boost the
execution efficiency of CUDA kernels.

Fig. 6. Speedup comparison between thread size

GTX 690 has two GPUs. Once both GPUs are used, the execution time is further decreased.

In order to compare performance between single-GPU and multi-GPU, the GPU-based
parallel versions of RLS-OPB were run on the considered images, in which the proposed
multi-GPU version refers to single-node desktop systems with multiple compute devices. We
obtained different speedups for the AVIRIS images above on the different GPUs, as shown in
Fig. 5. The results indicate that using one single GPU we have an average speedup of 46×.
When there are more than one GPU available, the average compression time of the GPU-based
RLS-OPB takes about 1.5 s or a speedup of 89× relative to RLS-OPB-S. The fact that using 2
GPUs does not have a total speedup near 2 can be attributed to the reason that each GPU is not
assigned a job of equal workload. In spite of this, a general trend can be seen that using more
GPUs does give higher speedup for RLS-OPB.

THREAD_SIZE can play an important role on the computing performance. Thread
allocation determines not only the block size but also the grid size because these resources are
dynamically partitioned and assigned to support their execution. Meanwhile, the latency of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3555

accessing and the occupancy of GPU depend on the number of the active warps in each SM. In
order to verify the THREAD_SIZE allocation of our GPU parallel implementation. We tested
the speedup for different thread sizes in processing one YSC-0 image (still using 2 GPUs). The
result is comparatively reported in Fig. 6. As can be seen from Fig. 6, the THREAD_SIZE of
32×32 produces the best performance.

In order to compare performance across GPUs, we tested the speedup for images of
different sizes on multiple NVIDIA GPUs. Specifically, the parallel version RLS-OPB-P was
run on the Fermi-based GTX 690, which has 1536 cores; the Fermi-based GTX 570, which has
480 cores; and the Fermi-based GTX 280, which has 240 cores. The result is shown in Fig. 7
－the Fermi-based GTX 690 produces the best performance.

0 32*32 64*64 128*128 256*256 512*512
0

10

20

30

40

50

60

70

80

90

Image size

S
pe

ed
up

GTX 690
GTX 570
GTX 280

Fig. 7. Speedup for images of different sizes on the different GPUs

To conclude this section, we emphasize that (as shown in Table 4 and Fig. 5) the average

speedups of the single-GPU and multi-GPU GPU versions are more than 46× and 89× with
regard to the serial version RLS-OPB-S, respectively. While the multicore version
RLS-OPB-M obtains an average speedup of 2.3×. For the AVIRIS scene, the compression task
can be completed in about 1.5 s. These are important advantages offered by GPU platforms in
terms of being able to adapt computationally expensive compression problems such as those
involved in RLS methods to time-critical scenarios.

5. Conclusion
In this paper, a novel parallel recursive least square compression method on GPUs has been
proposed. First, an optimized recursive least square model is introduced based on optimal
number of prediction bands, which improves the bit rate by spreading the spectral information
from the current pixel to its neighbors until achieving a global stable state on the whole image.
Further, a parallel implementation of the RLS approach for GPUs is developed using the
NVIDIA CUDA. Experimental results on AVIRIS images show the effectiveness of the
proposed GPU implementation, not only in terms of bit rate but also in terms of computing
performance. Specially, when more than one GPU is available, the implementation achieves

3556 Li et al.: Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

significant speedups compared to the serial and multicore versions, and provides an effective
and efficient compression solution for AVIRIS images compression in real time. The future
work will consider the I/O communications between the host and the device for further
speedup.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No.
61373162), the Research Foundation of the Sichuan Department of Education (Grant No.
15ZB0044), and the Research Foundation of Sichuan Normal University (Grant No.
2015KYQD312). The author thanks the anonymous reviewers and the editors for their
valuable comments to improve the presentation of the paper.

References
[1] J. Wu, W. Kong, J. Mielikainen and B. Huang, “Lossless compression of hyperspectral imagery

via clustered differential pulse code modulation with removal of local spectral outliers,” IEEE
Signal Processing Letters, vol. 22, no. 12, pp. 2194-2198, December, 2015.
Article (CrossRef Link).

[2] J. Mielikainen, “Lossless compression of hyperspectral images using lookup tables,” IEEE Signal
Processing Letters, vol. 13, no. 3, pp. 157–160, March, 2006. Article (CrossRef Link).

[3] B. Huang and Y. Sriraja, “Lossless compression of hyperspectral imagery via lookup tables with
predictor selection,” in Proc. of SPIE, vol. 6365, pp. 63650L-1–63650L-8, September, 2006.
Article (CrossRef Link).

[4] CCSDS, “Lossless multispectral and hyperspectral image compression,” 123.0-B-1, CCSDS,
2012.

[5] C. C. Lin and Y. T. Hwang, “An efficient lossless compression scheme for hyperspectral images
using two-stage prediction,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 3, pp.
558-562, July, 2010. Article (CrossRef Link).

[6] J. W. Song, Z. W. Zhang and X. M. Chen, “Lossless compression of hyperspectral imagery via
RLS filter,” Electronics Letters, vol. 49, no. 16, pp. 992-994, August, 2013.
Article (CrossRef Link).

[7] A. Plaza, Q. Du, Y. L. Chang and R. L. King, “High performance computing for hyperspectral
remote sensing,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 4, no. 3, pp. 528–544, September, 2011. Article (CrossRef Link).

[8] E. Christophe, J. Michel and J. Inglada, “Remote sensing processing: From multicore to GPU,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4, no. 3,
pp. 643–652, September, 2011. Article (CrossRef Link).

[9] C. Gonzalez, D. Mozos, J. Resano and A. Plaza, “FPGA implementation of the N-FINDR
algorithm for remotely sensed hyperspectral image analysis,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 50, no. 2, pp. 374–388, February, 2012. Article (CrossRef Link).

[10] S. Bernabé, S. Sánchez, A. Plaza, S. López, J. A. Benediktsson and R. Sarmiento, “Hyperspectral
unmixing on GPUs and multi-core processors: A comparison,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 6, no. 3, pp. 1386–1398, June, 2013.
Article (CrossRef Link).

[11] J. Mielikainen, R. Honkanen, B. Huang, P. Toivanen and C. Lee, “Constant coefficients linear
prediction for lossless compression of ultraspectral sounder data using a graphics processing unit,”
Journal of Applied Remote Sensing, vol. 4, no. 1, p. 041774, September, 2010.
Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/LSP.2015.2443913
http://dx.doi.org/doi:10.1109/LSP.2005.862604
http://dx.doi.org/doi:10.1117/12.690659
http://dx.doi.org/doi:10.1109/LGRS.2010.2041630
http://dx.doi.org/doi:10.1049/el.2013.1315
http://dx.doi.org/doi:10.1109/jstars.2010.2095495
http://dx.doi.org/doi:10.1109/JSTARS.2010.2102340
http://dx.doi.org/doi:10.1109/TGRS.2011.2171693
http://dx.doi.org/doi:10.1109/JSTARS.2013.2254470
http://dx.doi.org/doi:10.1117/1.3496907

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3557

[12] S. C. Wei and B. Huang, “GPU acceleration of predictive partitioned vector quantization for
ultraspectral sounder data compression,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 4, no. 3, pp. 677-682, September, 2011.
Article (CrossRef Link).

[13] L. Santos, E. Magli, R. Vitulli, J. F. Lopez and R. Sarmiento, “Highly-parallel GPU architecture
for lossy hyperspectral image compression,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 6, no. 2, pp. 670-681, April, 2013. Article (CrossRef Link).

[14] Y. Dai, Y. Fang, D. He and B. Huang, “Parallel design for error-resilient entropy coding algorithm
on GPU,” Journal of Parallel and Distributed Computing, vol. 73, no. 4, pp. 411-419, April, 2013.
Article (CrossRef Link).

[15] C. Y. Wang, R. Y. Shan and X. Zhou, “APBT-JPEG image coding based on GPU,” KSII
Transactions on Internet and Information Systems, vol. 9, no. 4, pp. 1457-1470, April, 2015.
Article (CrossRef Link).

[16] R. Y. Shan, X. Zhou, C. Y. Wang and B. C. Jiang, “All phase discrete sine biorthogonal transform
and its application in JPEG-like image coding using GPU,” KSII Transactions on Internet and
Information Systems, vol. 10, no. 9, pp. 4467-4486, September, 2016. Article (CrossRef Link).

[17] C. F. Huo, R. Zhang and T. X. Peng, “Lossless compression of hyperspectral images based on
searching optimal multibands for prediction,” IEEE Geoscience and Remote Sensing Letters, vol. 6,
no. 2, pp. 339-343, April, 2009. Article (CrossRef Link).

[18] J. Zhang and G. Z. Liu, “An efficient reordering prediction-based lossless compression algorithm
for hyperspectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 2, pp.
283-287, April, 2007. Article (CrossRef Link).

[19] J. Mielikainen and P. Toivanen, “Lossless compression of ultraspectral sounder data using linear
prediction with constant coefficients,” IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 3,
pp. 495-498, July, 2009. Article (CrossRef Link).

[20] NVIDIA Developer Zone, “CuBLAS user guide,” January, 2015. [Online]. Available:
http://docs.nvidia.com/cuda/cublas/index.html

[21] EM Photonics, “CULA Programmer’s Guide,” June, 2014. [Online]. Available:
http://www.culatools.com/cula_dense_programmers_guide/

[22] Z. B. Wu, Q. C. Wang, A. Plaza, J. Li, J. J. Liu and Z. H. Wei, “Parallel implementation of sparse
representation classifiers for hyperspectral imagery on GPUs,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2912-2925, June, 2015.
Article (CrossRef Link).

[23] F. Rob, CUDA Application Design and Development, Elsevier, Waltham, 2011.
Article (CrossRef Link).

[24] Jet Propulsion Laboratory, NASA Airborne visible infrared imaging spectrometer website.
[Online]. Available: http://aviris.jpl.nasa.gov

Changguo Li received his B. E. degree in applied mathematics from Mianyang Normal
University, China, in 2004; his M. E. degree in computational mathematics from Sichuan
Normal University, China, in 2007; his Ph. D. degree in earth exploration and information
technology from Chengdu University of Technology, China, in 2015. He is currently an
associate professor with the School of Fundamental Education, Sichuan Normal
University, Chengdu, China. His current research interests include hyperspectral image
processing, parallel computing and pattern recognition.

http://dx.doi.org/doi:10.1109/JSTARS.2011.2132117
http://dx.doi.org/doi:10.1109/JSTARS.2013.2247975
http://dx.doi.org/doi:10.1016/j.jpdc.2012.12.008
http://dx.doi.org/doi:10.3837/tiis.2015.04.011
http://dx.doi.org/doi:10.3837/tiis.2016.09.024
http://dx.doi.org/doi:10.1109/LGRS.2008.2012135
http://dx.doi.org/doi:10.1109/LGRS.2007.890546
http://dx.doi.org/doi:10.1109/LGRS.2009.2020092
http://dx.doi.org/doi:10.1109/JSTARS.2015.2413831
http://dx.doi.org/doi:10.1016/B978-0-12-388426-8.00018-5

