• Title/Summary/Keyword: parallel communication

Search Result 1,117, Processing Time 0.024 seconds

Parallel Inverse Transform and Small-sized Inverse Quantization Architectures Design of H.264/AVC Decoder (H.264/AVC 복호기의 병렬 역변환 구조 및 저면적 역양자화 구조 설계)

  • Jung, Hong-Kyun;Cha, Ki-Jong;Park, Seung-Yong;Kim, Jin-Young;Ryoo, Kwang-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.444-447
    • /
    • 2011
  • In this paper, parallel IT(inverse transform) architecture and IQ(inverse quantization) architecture with common operation unit for the H.264/AVC decoder are proposed. By using common operation unit, the area cost and computational complexity of IQ are reduced. In order to take four execution cycles to perform IT, the proposed IT architecture has parallel architecture with one horizontal DCT unit and four vertical DCT units. Furthermore, the execution cycles of the proposed architecture is reduced to five cycles by applying two state pipeline architecture. The proposed architecture is implemented to a single chip by using Magnachip 0.18um CMOS technology. The gate count of the proposed architecture is 14.3k at clock frequency of 13MHz and the area of proposed IQ is reduced 39.6% compared with the previous one. The experimental result shows that execution cycle the proposed architecture is about 49.09% higher than that of the previous one.

  • PDF

A Public Key knapsack Crytosystem Algorithm for Security in Computer Communication (컴퓨터 통신의 안전을 위한 공개키 배낭 암호계 앨고리듬)

  • 이영노;신인철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.9
    • /
    • pp.893-900
    • /
    • 1991
  • And this system is compared with past knapsack system by implementation of low density attack in Brickell and Lagarias, Odlyzko’s method. Also the VLSI architecture for parallel implementation of this linearly shift knapsack system is presented

  • PDF

A Study on the optical logic gate using LED array (LED 배열을 이용한 광논리 게이트에 관한 연구)

  • 권원현;박한규
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1984.10a
    • /
    • pp.25-27
    • /
    • 1984
  • Using LED sources, the system that performs optical logic function of the input data arrays will be presented. Sixteen possible functions of two binary data arrays, such as AND, OR, NOR and XOR are simply obtained in parallel by controlling LED switching mode. Experimental result and some examples of application will be given.

  • PDF

A Communication and Computation Overlapping Model through Loop Sub-partitioning and Dynamic Scheduling in Data Parallel Programs (데이타 병렬 프로그램에서 루프 세부 분할 및 동적 스케쥴링을 통한 통신과 계산의 중첩 모델)

  • Kim, Jung-Hwan;Han, Sang-Yong;Cho, Seung-Ho;Kim, Heung-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.23-33
    • /
    • 2000
  • We propose a model which overlaps communication with computation for efficient communication in the data-parallel programming paradigm. The overlapping model divides a given loop partition into several sub-partitions to obtain computation which can be overlapped with communication. A loop partition sometimes refers to other data partitions, but not all iterations in the loop partition require non-local data. So, a loop partition may be divided into a set of loop iterations which require non-local data, and a set of loop iterations which do not. Each loop sub-partition is dynamically scheduled depending on associated message arrival, The experimental results for a few benchmarks in IBM SP2 show enhanced performance in our overlapping model.

  • PDF

Design of High Speed Binary Arithmetic Encoder for CABAC Encoder (CABAC 부호화기를 위한 고속 이진 산술 부호화기의 설계)

  • Park, Seungyong;Jo, Hyungu;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.774-780
    • /
    • 2017
  • This paper proposes an efficient binary arithmetic encoder hardware architecture for CABAC encoding, which is an entropy coding method of HEVC. CABAC is an entropy coding method that is used in HEVC standard. Entropy coding removes statistical redundancy and supports a high compression ratio of images. However, the binary arithmetic encoder causes a delay in real time processing and parallel processing is difficult because of the high dependency between data. The operation of the proposed CABAC BAE hardware structure is to separate the renormalization and process the conventional iterative algorithm in parallel. The new scheme was designed as a four-stage pipeline structure that can reduce critical path optimally. The proposed CABAC BAE hardware architecture was designed with Verilog HDL and implemented in 65nm technology. Its gate count is 8.07K and maximum operating speed of 769MHz. It processes the four bin per clock cycle. Maximum processing speed increased by 26% from existing hardware architectures.