This invited paper introduces results on Web science and technology obtained during work with the Korea Advanced Institute of Science and Technology. In the first part, we discuss algorithms for exploring the deep Web, which refers to the collection of Web pages that cannot be reached by conventional Web crawlers. In the second part, we discuss sorting algorithms on the MapReduce system, which has become a dominant paradigm for massive parallel computing.
본 논문은 MLC 타입 낸드 플래시 메모리의 오류 정정을 위한 병렬 BCH 복호기 설계를 제안한다. 제안된 BCH 복호기는 다중 바이트 병렬 연산을 지원한다. 병렬 계수 증가에 따른 회로 크기 증가폭을 줄이기 위해, LFSR 기반 병렬 신드롬 생성기 구조를 적용하였다. 제안된 BCH 복호기는 VHDL을 이용하여 합성되었고, Xilinx FPGA를 이용하여 동작을 검증하였다. 검증 결과 제안된 신드롬 생성기는 기존 바이트-단위의 병렬 신드롬 생성기에 비해 성능을 2.4배 증가시켰다. GFM 방식의 병렬 신드롬 생성기와 비교하여, 동작 완료에 따른 사이클 수는 동일하나, 회로 크기는 1/3 이하로 감소됨을 확인하였다.
A parallel condensation algorithm for efficient dynamic analysis of three-dimensional large-scale structures is presented. The algorithm is developed for a user-friendly and cost effective high-performance computing system on a collection of Pentium processors connected via a 100 Mb/s Ethernet LAN. To harness the parallelism in the computing system effectively, a large-scale structure is partitioned into a number of substructures equal to the number of computers in the computing system Then, for reduction in the size of an eigenvalue problem the computations required for static condensation of each substructure is processed concurrently on each slave computer. The performance of th proposed parallel algorithm is demonstrated by applying to dynamic analysis of a three dimensional structure. The results show that how the parallel algorithm facilitates the efficient use of a small number of low-cost personal computers for dynamic analysis of large-scale structures.
자료 병렬성이란 자료 집합의 원소들에 대하여 동일한 작업을 동시에 수행하므로써 얻어지는 병렬성을 말한다. 함수형 언어에서 자료 집합에 대한 반복 수행은 재귀적 자료형에 대한 재귀 함수에 의하여 표현된다. 본 논문에서는 이러한 재귀 함수를 자료 병렬 프로그램으로 변환하기 위한 병렬화 방법을 제시한다. 생성되는 병렬 프로그램의 병렬 수행 구조로는 일반적인 형태의 재귀적 자료형에 대하여 정의되는 다형적인 자료 병렬 연산을 사용하여 트리, 리스트 등과 같은 일반적인 재귀적 자료 집합에 대한 자료 병렬 수행이 가능하도록 하였다. 재귀 함수의 병렬화를 위해서는, 함수를 이루는 각각의 계산들의 병렬성을 재귀 호출에 의해 존재하는 의존성에 기반하여 분류하고, 이에 기반하여 각각의 계산들에 대한 적절한 자료 병렬 연산을 사용하는 병렬 프로그램을 생성하였다.Abstract Data parallelism is obtained by applying the same operations to each element of a data collection. In functional languages, iterative computations on data collections are expressed by recursions on recursive data structures. We propose a parallelization method for data-parallel implementation of such recursive functions. We employ polytypic data-parallel primitives to represent the parallel execution structure of the object programs, which enables data parallel execution with general recursive data structures, such as trees and lists. To transform sequential programs to their parallelized versions, we propose a method to classify the types of parallelism in subexpressions, based on the dependencies of the recursive calls, and generate the data-parallel programs using data-parallel primitives appropriately.
이 논문에서는 비공유 병렬구조에서 이행적 종속성을 갖는 선형적 재귀규칙의 병렬평가에 대한 패러다임을 제안한다. 병렬평가를 위해 우리는 모든 노드가 메시지 교환을 위해 연결망만을 공유하는 비공유 병렬구조를 고려한다. 여기서 정규화된 규칙의 평가는 그 규칙의 중명-이론적 의미의 계산이다. 이행적 종속성올 갖는 정규 화된 선형적 재귀규칙을 정의하고, 그 규칙이 등가의 표현식으로 변환될 수 있음을 보이고, 등가의 표현식을 근거로 결합, 분할, 이행성폐포 연산을 이용하여 정규화된 규칙에 대한 병렬평가를 위한 패러다임을 제안하고 시간 복잡도를 분석하였다.
기계학습의 정확도는 학습용 데이터의 양과 데이터의 품질에 많은 영향을 받는다. 기존의 웹을 기반으로 학습용 데이터를 수집하는 것은 실제 학습과 무관한 데이터가 수집 될 수 있는 위험성이 있으며 데이터의 투명성을 보장할 수가 없다. 본 논문에서는 블록체인구조에서 블록들이 직접 병렬적으로 데이터를 수집하게 하고 각 블록들이 수집한 데이터를 타 블록의 데이터와 비교하여 양질의 데이터만을 선별하는 방안을 제안한다. 제안하는 시스템은 각 블록들은 데이터를 서로 블록체인을 통해 공유하며 All-reduce 구조의 Parallel-SGD를 활용하여 다른 블록들의 데이터와 비교를 통해 양질의 데이터만을 선별하여 학습용 데이터셋을 구성할 수가 있다. 또한 본 논문에서는 제안한 구조의 성능을 확인하기 위해 실험을 통해 기존의 벤치마크용 데이터셋의 이미지를 활용하여 변조된 이미지 사이에서 원본 이미지만을 양질의 데이터로 판별함을 확인하였다.
The electrified railway has various power supply schemes. Although the identical trains are operated in same condition and the impedance of track are equal, the genealogy impedance of track is changed according to composition method of feeding scheme. So, the collection voltage of train and supplying power from railway substation are greatly unlike. For simulation of collection voltage and power supply according to feeding scheme, using 6-port network analysis proposed previously simulate collection voltage and supply power according to feeding scheme(Parallel Post feeding system, normal feeding system and tie feeding system) and compare and investigate each characteristics.
In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.
One of the drawbacks of GA-based structural optimization is that the fitness evaluation of a population of hundreds of individuals requiring hundreds of structural analyses at each CA generation is computational too expensive. Therefore, a parallel genetic algorithm is developed for structural optimization on a cluster of personal computers in this paper. Based on the parallel genetic algorithm, a population at every generation is partitioned into a number of sub-populations equal to the number of slave computers. Parallelism is exploited at sub-population level by allocationg each sub-population to a slave computer. Thus, fitness of a population at each generation can be concurrently evaluated on a cluster of personal computers. For implementation of the algorithm a virtual distributed computing system in a collection of personal computers connected via a 100 Mb/s Ethernet LAN. The algorithm is applied to the minimum weight design of a steel structure. The results show that the computational time requied for serial GA-based structural optimization process is drastically reduced.
The purpose of this study is to analyse the occurrence and evolution of Mao suit which is important position in the modern costume history of China and to provide a source of design inspiration to contemporary fashion designers. In the research method, literature review and case studies was conducted in parallel. For the literature review, changes of Mao suit in each age were reviewed with reference to the related documents, Chinese costume and cultural history, prior research papers and internet resources. The case analysis was qualitatively done focusing on the silhouette, color and detail of clothes in fashion collections. The scope of the study was from 1912 to 2000. The case analysis of the Mao suit applied to the contemporary fashion was made on the applications centered around 'London Collection', 'New York Collection', 'Paris Collection', 'Milan Collection' and 'Chinese Fashion Week' from 2008 to 2015. The results found that Mao suit changed into many different forms after Sun Wen designed it for the first time in 1912. This study classified it into Phase 1(1912~1927), Phase 2(1928~1965), Phase 3(1966~1977), and Phase 4(1978~2000) with historical and political issues and conformational changes in Mao suit. The frequency analysis of the cases of the fashion collections using Mao suit from 2008 to 2015 showed an increased application of Mao suit to the western collection in New York, Paris and London in 2008 due to the impact of Beijing Olympics. However, from 2009 onwards, the frequency of the utilization of Mao suit was higher in the Chinese Fashion Week and the New York Collection. This cause is explained by the fact that the designers who inspired from Mao suit in the New York Collection are American Chinese.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.