• Title/Summary/Keyword: paraboloid

Search Result 41, Processing Time 0.028 seconds

A study on the Changes of TGV & ICE Series' Nose Shape (TGV & ICE Series의 전두부 디자인 형상변천에 관한 연구)

  • Lee, Hee-Yup;Hong, Suk-Ki;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1835-1842
    • /
    • 2007
  • The purpose of this paper describes the changes of TGV & ICE series' nose shape by increasing train speed and according to the periodical characteristics. As the speed increases, the length of the nose shape trends to lengthen longer. But the nose shape length does not increase as speed improves by optimized nose shape to reduce aerodynamic drag and micro-pressure wave in tunnels. TGV & ICE series' nose shape can be classified into Advanced paraboloid type, Shape-nosed type, Organic double-edged type and Flat-nosed type by the advance research(the changes of Shinkansen vehicle' nose shape) of high speed railway. Because it trends to be diversified and characterized more and more. This paper analyzed and introduced as TGV & ICE series' nose shape by top 2 nation (Germany, France) and high speed railway in the past years(1980-2007) for their railway design trends by new positioning(Advance research).

  • PDF

A study on the duplication of nickel stamper using circular paraboloid AAO nano-patterned master for anti-reflection effect (무반사 효과를 위한 회전포물체 나노패턴 양극산화 마스터를 이용한 니켈스탬퍼 제작에 관한 연구)

  • Kim, Min-Gu;Hong, Seok-Gwan;Park, Chun-Man;Gwak, Mun-Gyu;Kim, Hyeon-Jong;Yun, Gyeong-Hwan;Gang, Jeong-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.158-159
    • /
    • 2014
  • 무반사 효과를 보이는 나방눈을 관찰해보면 눈 표면에 회전포물체 형상 나노패턴이 형성된 것을 확인할 수 있다. 본 논문에서는 회전포물체 형상 AAO를 제작하였으며 이 마스터를 이용해 전주공정으로 니켈스탬퍼를 제작하였다. 제작된 father, mother 니켈스탬퍼 윗면의 나노패턴 형상을 FE-SEM(Field Emission Scanning Electron Microscope)으로 확인하였다.

  • PDF

The Changes of Shinkansen vehicles' nose shape (신간선 전두부 디자인의 형상변천)

  • Kim Kwang Myung;Han Suk-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.94-100
    • /
    • 2005
  • This paper describes the changes of Shinkansen vehicles' nose shape by increasing train speed and according to the stream of time. As the speed increases, the length of the nose trends to lengthen longer. But the nose length does not increase as speed improves by optimized nose shape to reduce aerodynamic drag and micro-pressure wave in tunnels. Shinkansen vehicles nose shape can be classified into Advanced paraboloid type, Sharp-nosed type, Organic double-edged type and Flat-nosed type. In addition, it trends to be diversified and characterized more and more. In the near future, nose designs will be emphasized by the design concept including identity of each JR company based on optimized aerodynamic shape.

  • PDF

Development of a Light Extinction Coefficient Change Model according to the Growth Stage of Cucumber in a Greenhouse (온실 내 백다다기 오이의 생육단계에 따른 흡광계수 변화 모델 개발)

  • Ki Beom Jeon;Jong Hwa Shin
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.

SIZE OF DOT PRODUCT SETS DETERMINED BY PAIRS OF SUBSETS OF VECTOR SPACES OVER FINITE FIELDS

  • Koh, Doowon;Pi, Youngjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.853-867
    • /
    • 2013
  • In this paper we study the cardinality of the dot product set generated by two subsets of vector spaces over finite fields. We notice that the results on the dot product problems for one set can be simply extended to two sets. Let E and F be subsets of the d-dimensional vector space $\mathbb{F}^d_q$ over a finite field $\mathbb{F}_q$ with q elements. As a new result, we prove that if E and F are subsets of the paraboloid and ${\mid}E{\parallel}F{\mid}{\geq}Cq^d$ for some large C > 1, then ${\mid}{\Pi}(E,F){\mid}{\geq}cq$ for some 0 < c < 1. In particular, we find a connection between the size of the dot product set and the number of lines through both the origin and a nonzero point in the given set E. As an application of this observation, we obtain more sharpened results on the generalized dot product set problems. The discrete Fourier analysis and geometrical observation play a crucial role in proving our results.

Study of contact melting of plate bundles by molten material in severe reactor accidents

  • J.J. Ma;W.Z. Chen;H.G. Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4266-4273
    • /
    • 2023
  • In a severe reactor accident, a crust will form on the surface of the molten material during the core melting process. The crust will have a contact melting with the internal components of the reactor. In this paper, the contact melting process of the molten material on the austenitic stainless steel plate bundles is studied. The contact melting model of parabolic molten material on the plate bundles is proposed, and the rule and main effect factors of the contact melting are analyzed. The results show that the melting velocity is proportional to the slope of the paraboloid, the heat flux and the distance between two plates D. The influence of melt gravity and the plate width on melting velocity is negligible. The thickness of the molten liquid film is proportional to the heat flux and plate width, and it is inversely proportional to the gravity. With the increase of D, the liquid film thickness decreases at first and then increases gradually. The liquid film thickness has a minimum against D. When the width of the plate is small, the width of the plate is the main factor affecting the thickness of the liquid film. The parameters are coupled with each other. In a severe reactor accident, the wider internal components of reactor, which can increase the thickness of the melting liquid film and reduce the net input heat flux from the molten material to the components, are the effective measures to delay the melting process.

Investigation on R/C Hyperbolic Paraboloid (HP) Saddle Shell Ultimate Behavior (R/C 쌍곡 포물선 '안장' 쉘의 극한 거동 연구(研究))

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 1993
  • Nonlinear inelastic behavior of an HP saddle shell has been examined by a finite element computer program developed on a Cray Y-MP. The mesh convergence is studied using three progressively refined finite element mesh models, $16{\times}16$, $32{\times}32$ and $64{\times}64$, for the elastic and inelastic analyses. It is shown that the $32{\times}32$ mesh model gives a solution that is very close to that given by the $64{\times}64$ mesh model, thus, showing a convergence. The inelastic analysis shows that the shell has a tremendous capacity to redistribute the stresses. At the ultimate, the concrete cracks and the reinforcement yieldings are spread out all over the shell, indicating that the stress distribution in the shell is approaching that given by the classical membrane theory. The present computer program provides a very useful tool for evaluating the nonlinear ultimate behavior of concrete shells during the design process.

  • PDF

Estimation and Validation of Taper Equations for Three Major Coniferous Species in Gangwon and North Gyeongsang Provinces of South Korea

  • Lee, Daesung;Seo, Yeongwan;Lee, Jungho;Choi, Jungkee
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.315-321
    • /
    • 2017
  • This study was carried out to estimate the parameters of stem taper functions, to figure out the best taper model by species, and to compare with previous studies by species, targeting on the stemmed tree samples collected from the Korean red pine (Pinus densiflora), Korean white pine (Pinus koraiensis), and Japanese larch (Larix kaempferi ) stands in Gangwon and North Gyeongsang provinces of South Korea. The seven widely used models were applied in this study, and Muhairwe 1999 model for Korean red pine and Korean white pine and Kozak 2002 model for Japanese larch were evaluated as the best model for each species according to the fit statistics and the predicted stem form comparison. In addition, the predicted diameter was suitably fitted when comparing the previous studies, and the values were more appropriate following stem taper according to neiloid, paraboloid, and cone parts by species. Consequently, the estimation of this study was considered to represent the stem taper well. When comparing stem taper of three species, the diameter was largest in Korean white pine. Overall, the taper models of this study are judged to be useful for estimating stem form and volume computation of Korean red pine, Korean white pine, and Japanese larch.

Dendrite Tip Shapes of Pivalic Acid-Ethanol and Succinonitrile-Salol Systems (Pivalic Acid-Ethanol 및 Succinonitrile-Salol 계에서의 수지상정 선단의 형상)

  • Suk, Myung-Jin;Park, Young-Min;Oh, Sung-Tag;Chang, Si-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.570-576
    • /
    • 2011
  • The shape of a dendrite tip has long been approximated by a paraboloid of revolution, but many attempts have been made as well to more accurately match the dendrite tip profile using other mathematical functions: power function, 4th order polynomial, and hyperbolic function. In the present work, dendrite tip shapes were matched by parabolic function. The differences between the dendrite tip shapes of pivalic acid(PVA)-ethanol(Eth) and succinonitrile(SCN)-salol systems, characterized by anisotropic and isotropic solid-liquid interfacial properties, respectively, were quantitatively treated using shape parameters. The PVA-Eth system showed a slightly higher Z/R value than the SCN-salol system, their Z/R values lying in the range 2-4. (Z is the distance from the tip beyond which the parabolic fit starts to deviate from the profile, and R the tip radius.) ${\lambda}_P$ is the distance from the tip beyond which side branching starts to appear, and is larger in the PVA-Eth system than the SCNsalol system. ${\lambda}_P$ is different for both sides of the 2-dimensional dendrite profile. The difference of ${\lambda}_P$ between both sides of the dendrite is larger for PVA-Eth system than for SCN-salol, implying that the dendrite of PVA-Eth is less symmetric than that of SCN-salol.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.