References
- J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27-57. https://doi.org/10.1007/s00039-004-0451-1
- J. Chapman, M. Erdo-gan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, Wolff's exponent in finite fields and sum-product estimates, Math. Z. 271 (2012), 63-93. https://doi.org/10.1007/s00209-011-0852-4
- P. Erdos, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250. https://doi.org/10.2307/2305092
- M. Erdo-gan, A bilinear Fourier extension theorem and applications to the distance set problem, Internat. Math. Res. Notices 23 (2005), 1411-1425.
- K. Falconer, On the Hausdorff dimension of distance sets, Mathematika 32 (1985), 206-212. https://doi.org/10.1112/S0025579300010998
- L. Guth and N. Katz, On the Erdos distinct distance problem in the plane, preprint.
- D. Hart, A. Iosevich, D. Koh, and M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdos-Falconer distance conjecture, Trans. Amer. Math. Soc. 363 (2011), no. 6, 3255-3275. https://doi.org/10.1090/S0002-9947-2010-05232-8
- A. Iosevich and M. Rudnev, Erdos distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007), 6127-6142. https://doi.org/10.1090/S0002-9947-07-04265-1
- D. Koh and C. Shen, Sharp extension theorems and Falconer distance problems for algebraic curves in two dimensional vector spaces over finite fields, Revista Matematica Iberoamericana 28 (2012), no. 1, 157-178.
- D. Koh and C. Shen, Additive energy and the Falconer distance problem in finite fields, Integers 13 (2013), 1-10.
- N. Katz and G. Tardos, A new entropy inequality for the Erdos distance problem, In: Contemp. Math. Towards a Theory of Geometric Graphs, 342 Amer. Math. Soc. Providence (2004), 119-126.
- P. Mattila, Spherical averages of Fourier transforms of measures with finite energy: dimension of intersections and distance sets, Mathematika 34 (1987), 207-228. https://doi.org/10.1112/S0025579300013462
- J. Solymosi and V. Vu, Distinct distances in high dimensional homogeneous sets in: Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics 342 Amer. Math. Soc. (2004), 259-268.
- J. Solymosi and V. Vu, Near optimal bounds for the number of distinct dis-tances in high dimensions, Combinatorica 28 (2008), no. 1, 113-125. https://doi.org/10.1007/s00493-008-2099-1
- T. Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices (1999), 547-567.
Cited by
- On the Sums of Any $k$ Points in Finite Fields vol.30, pp.1, 2016, https://doi.org/10.1137/140982441